Aprataxin

Aprataxin is a protein that in humans is encoded by the APTX gene.[5][6][7]

APTX
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesAPTX, AOA, AOA1, AXA1, EAOH, EOAHA, FHA-HIT, aprataxin
External IDsOMIM: 606350 MGI: 1913658 HomoloGene: 41634 GeneCards: APTX
Gene location (Human)
Chr.Chromosome 9 (human)[1]
Band9p21.1Start32,972,606 bp[1]
End33,025,168 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

54840

66408

Ensembl

ENSG00000137074

ENSMUSG00000028411

UniProt

Q7Z2E3

Q7TQC5

RefSeq (mRNA)

NM_001025444
NM_001025445
NM_025545

RefSeq (protein)

NP_001020615
NP_001020616
NP_079821

Location (UCSC)Chr 9: 32.97 – 33.03 MbChr 4: 40.68 – 40.7 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

This gene encodes a member of the histidine triad (HIT) superfamily, some of which have nucleotide-binding and diadenosine polyphosphate hydrolase activities. The encoded protein may play a role in single-stranded DNA repair. Mutations in this gene have been associated with ataxia–ocular apraxia. Multiple transcript variants encoding distinct isoforms have been identified for this gene, however, the full length nature of some variants has not been determined.[7]

Function

Aprataxin removes AMP from DNA ends following abortive ligation attempts by DNA Ligase IV during non-homologous end joining, thereby permitting subsequent attempts at ligation.[8][9]

DNA strand breaks

Ataxia oculomotor apraxia-1 is a neurological disorder caused by mutations in the APTX gene that encodes aprataxin.[10] The neurological disorder appears to be caused by the gradual accumulation of unrepaired DNA strand breaks resulting from abortive DNA ligation events.[10]

Premature aging

Aptx−/− mutant mice have been generated, but they lack an obvious phenotype.[10] Another mouse model was generated in which a mutation of superoxide dismutase I (SOD1) is expressed in an Aptx−/− mouse.[11] The SOD1 mutation causes a reduction in transcription recovery following oxidative stress. These mice showed accelerated cellular senescence. This study also demonstrated a protective role of Aptx in vivo and suggested that the loss of Aptx function results in progressive accumulation of DNA breaks in the nervous system, triggering hallmarks of systemic premature aging [11] (see DNA damage theory of aging).

Interactions

Aprataxin has been shown to interact with:

gollark: got🦀o
gollark: goto considered harmful
gollark: Well, just read a privacy policy to help you sleep.
gollark: So far the new policy has this written:> PotatOS provides Primarily Otiose Transformative Advanced Technology, Or Something ("PotatOS"), associated programs, libraries and other code ("PotatOS Potatosystems"), and PotatOS backend webservices such as SPUDNETv2/PIR, RSAPI, and PRUS ("PotatOS Services"). PotatOS, most PotatOS Potatosystems, and PotatOS Services are operated, created and maintained by the PotatOS development team ("us"). Some PotatOS Potatosystems are developed and maintained by third parties, and PotatOS, as a general purpose operating system, may interact with other organizations outside of the scope of this policy. This privacy policy ("PotatOS Privacy Policy") sets out how we may use information, such as information gathered via PotatOS and PotatOS Services.
gollark: I'm working on the new privacy policy now.

References

  1. GRCh38: Ensembl release 89: ENSG00000137074 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000028411 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Date H, Onodera O, Tanaka H, Iwabuchi K, Uekawa K, Igarashi S, Koike R, Hiroi T, Yuasa T, Awaya Y, Sakai T, Takahashi T, Nagatomo H, Sekijima Y, Kawachi I, Takiyama Y, Nishizawa M, Fukuhara N, Saito K, Sugano S, Tsuji S (Oct 2001). "Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene". Nat Genet. 29 (2): 184–8. doi:10.1038/ng1001-184. PMID 11586299.
  6. Moreira MC, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, Mendonca P, Costa M, Barros J, Yanagisawa T, Watanabe M, Ikeda Y, Aoki M, Nagata T, Coutinho P, Sequeiros J, Koenig M (Oct 2001). "The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin". Nat Genet. 29 (2): 189–93. doi:10.1038/ng1001-189. PMID 11586300.
  7. "Entrez Gene: APTX aprataxin".
  8. Rass U, Ahel I, West SC (December 2008). "Molecular mechanism of DNA deadenylation by the neurological disease protein aprataxin". J. Biol. Chem. 283 (49): 33994–4001. doi:10.1074/jbc.M807124200. PMC 2662222. PMID 18836178.
  9. Reynolds JJ, El-Khamisy SF, Katyal S, Clements P, McKinnon PJ, Caldecott KW (March 2009). "Defective DNA ligation during short-patch single-strand break repair in ataxia oculomotor apraxia 1". Mol. Cell. Biol. 29 (5): 1354–62. doi:10.1128/MCB.01471-08. PMC 2643831. PMID 19103743.
  10. Ahel I, Rass U, El-Khamisy SF, Katyal S, Clements PM, McKinnon PJ, Caldecott KW, West SC (2006). "The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates". Nature. 443 (7112): 713–6. doi:10.1038/nature05164. PMID 16964241.
  11. Carroll J, Page TK, Chiang SC, Kalmar B, Bode D, Greensmith L, Mckinnon PJ, Thorpe JR, Hafezparast M, El-Khamisy SF (2015). "Expression of a pathogenic mutation of SOD1 sensitizes aprataxin-deficient cells and mice to oxidative stress and triggers hallmarks of premature ageing". Hum. Mol. Genet. 24 (3): 828–40. doi:10.1093/hmg/ddu500. PMC 4291253. PMID 25274775.
  12. Date H, Igarashi S, Sano Y, Takahashi T, Takahashi T, Takano H, Tsuji S, Nishizawa M, Onodera O (December 2004). "The FHA domain of aprataxin interacts with the C-terminal region of XRCC1". Biochem. Biophys. Res. Commun. 325 (4): 1279–85. doi:10.1016/j.bbrc.2004.10.162. PMID 15555565.
  13. Gueven N, Becherel OJ, Kijas AW, Chen P, Howe O, Rudolph JH, Gatti R, Date H, Onodera O, Taucher-Scholz G, Lavin MF (May 2004). "Aprataxin, a novel protein that protects against genotoxic stress". Hum. Mol. Genet. 13 (10): 1081–93. doi:10.1093/hmg/ddh122. PMID 15044383.
  14. Clements PM, Breslin C, Deeks ED, Byrd PJ, Ju L, Bieganowski P, Brenner C, Moreira MC, Taylor AM, Caldecott KW (November 2004). "The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4". DNA Repair (Amst.). 3 (11): 1493–502. doi:10.1016/j.dnarep.2004.06.017. PMID 15380105.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.