AMFR

Autocrine motility factor receptor, isoform 2 is a protein that in humans is encoded by the AMFR gene.[5][6]

AMFR
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesAMFR, GP78, RNF45, autocrine motility factor receptor
External IDsOMIM: 603243 MGI: 1345634 HomoloGene: 888 GeneCards: AMFR
Gene location (Human)
Chr.Chromosome 16 (human)[1]
Band16q13Start56,361,452 bp[1]
End56,425,545 bp[1]
RNA expression pattern


More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

267

23802

Ensembl

ENSG00000159461

ENSMUSG00000031751

UniProt

Q9UKV5

Q9R049

RefSeq (mRNA)

NM_001144
NM_138958
NM_001323511
NM_001323512

NM_011787

RefSeq (protein)

NP_001135
NP_001310440
NP_001310441

NP_035917

Location (UCSC)Chr 16: 56.36 – 56.43 MbChr 8: 93.97 – 94.01 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Autocrine motility factor is a tumor motility-stimulating protein secreted by tumor cells. The protein encoded by this gene is a glycosylated transmembrane protein and a receptor for autocrine motility factor. The receptor, which shows some sequence similarity to tumor protein p53, is localized to the leading and trailing edges of carcinoma cells.[6]

Model organisms

Model organisms have been used in the study of AMFR function. A conditional knockout mouse line, called Amfrtm1a(KOMP)Wtsi[11][12] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[13][14][15]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[9][16] Twenty six tests were carried out on mutant mice and one significant abnormality was observed: Fewer than expected homozygous mutant mice survived until weaning.[9]

Interactions

AMFR has been shown to interact with Valosin-containing protein.[17][18]

gollark: Oh, and the iconization system contains a minor shortcut I'm slightly unhappy about.
gollark: The frontend ignores most errors and just entirely freezes.
gollark: The renderer leans heavily on Python's duck typing and randomly adds attributes it needs to things.
gollark: There are basically no comments.
gollark: The API is a thin layer over the database which has to accursedly convert things to ints or strings all the time because my IDs are 64-bit integers and JS only allows 53 bit ones because of course it does.

References

  1. GRCh38: Ensembl release 89: ENSG00000159461 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000031751 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Watanabe H, Carmi P, Hogan V, Raz T, Silletti S, Nabi IR, Raz A (Aug 1991). "Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor". J Biol Chem. 266 (20): 13442–8. PMID 1649192.
  6. "Entrez Gene: AMFR autocrine motility factor receptor".
  7. "Salmonella infection data for Amfr". Wellcome Trust Sanger Institute.
  8. "Citrobacter infection data for Amfr". Wellcome Trust Sanger Institute.
  9. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  10. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  11. "International Knockout Mouse Consortium".
  12. "Mouse Genome Informatics".
  13. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  14. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  15. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  16. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.
  17. Zhong, Xiaoyan; Shen Yuxian; Ballar Petek; Apostolou Andria; Agami Reuven; Fang Shengyun (Oct 2004). "AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation". J. Biol. Chem. United States. 279 (44): 45676–84. doi:10.1074/jbc.M409034200. ISSN 0021-9258. PMID 15331598.
  18. Lee, Joon No; Zhang Xiangyu; Feramisco Jamison D; Gong Yi; Ye Jin (Nov 2008). "Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 at a postubiquitination step". J. Biol. Chem. United States. 283 (48): 33772–83. doi:10.1074/jbc.M806108200. ISSN 0021-9258. PMC 2586246. PMID 18835813.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.