EL84

The EL84 is a thermionic valve of the power pentode type. It is used in the power output stages of audio amplifiers, most commonly now in guitar amplifiers, but originally in radios. The EL84 is smaller and more sensitive than the octal 6V6 that was widely used around the world until the 1960s. An interchangeable North American type is the 6BQ5 (the RETMA tube designation name for the EL84).

EL84
Common variants of the EL84, manufactured in Russia, Yugoslavia, Slovakia, and China
ClassificationThermionic Pentode
ServiceAudio
Socket connections
B9A (Noval)

The EL84 was developed to eliminate the need for a driver tube in radios, so it has rather more gain than is usual in a power pentode. Eliminating a preamplifier triode in radios made them cheaper. Manufacturers were quick to adopt it in general use, and they are found in many old European valve radios and other audio equipment. A single EL84 was used in low-cost equipment, and a push–pull pair for lower distortion and higher power.

In common with all 'E' prefix tubes, using the Mullard–Philips tube designation, it has a heater voltage of 6.3 V. It can produce 17 W output in Class AB1 in push–pull configuration. Many guitar amplifiers routinely run EL84 tubes in excess of 400 VDC, with the Traynor Guitarmate reportedly putting out 25 W RMS with 2 EL84s in a push–pull configuration and a B+ between 400–420 VDC.

Developed by Philips in 1953, and used in the British Mullard 5-10 amplifier circuit, the EL84 came to prominence when used in Watkins (and later the Vox) amplifiers preferred by many British Invasion bands of the 1960s.

N709, 6BQ5/EL84/6P15, and other exact equivalents

The 1959 "Miniwatt" Technical Data book from Philips lists the 6BQ5 as the R.E.T.M.A. (American) name for the EL84 in its "Type Number Cross Reference",[1] and hence an exact substitute. American and Japanese manufacturers might label their versions of the EL84 as "EL84/6BQ5" or "6BQ5/EL84"[2] or simply "6BQ5" Other manufacturers followed with their versions, such as the N709 from General Electric Co. Ltd. of England and the 6P15 from UK brand Mazda, that were designed to be "drop-in" substitutes. The CV2975 is the military designation (Common Valve) for EL84.[3]

Other equivalent tubes are the 7189 and 7189A,[4][5] an extended-ratings version of the tube for industrial applications, E84L (7320) long life, professional version with more than 10000 hours expected lifetime and the directly equivalent 6P14P (Cyrillic: 6П14П) produced in the USSR by the Reflektor plant. As of 2012 a slightly modified version of the 6P14P was manufactured in Russia for Sovtek. An extended-ratings version of the 6P14P is also available - 6P14P-EV (Cyrillic: 6П14П-ЕВ) and is known among US guitar players as "EL84M" or the "Russian military EL84". While not necessarily a true "military version" of the tube (in fact it is more comparable to the 7189), 6P14P-EVs are known for their low noise and durability. Large NOS (New Old Stock) supplies of the tube are available. The 6GK6 has nearly equivalent operating characteristics with a different pinout.

As of 2012 the tube was manufactured in Russia (Sovtek and Electro-Harmonix brands), Slovakia- Čadca (JJ Electronic), and Serbia- Niš (Ei). The Sovtek EL84 is often sold under their own brand name by other well-known electric guitar and guitar amplifier manufacturers - such as Fender or Mesa Boogie.

Also see 6P1P.

PL84, UL84 and EL86

Although RCA and Sylvania produced the 8BQ5 and 10BQ5 as exact equivalents to the 6BQ5/EL84 other than heater voltage/current, most variants of the EL84 (e.g. the 15CW5/PL84) for series-heater applications such as television receivers (where it was most economical to directly-rectify the mains) made slight changes to the geometry of the original EL84 design to optimise performance for the slightly lower power supply voltages. When a 6.3V heater version of the PL84 was needed, the type number EL86 was assigned; the EL86 and PL84 are therefore very similar to, but not exactly identical to, the original EL84.

Characteristics

Note: Specifications given for the EL84, PL84 and UL84 are from Philips; RCA and Sylvania list slightly higher voltage ratings for Va and Vkf and lower for Vg2 for the xCW5 series - the 6CW5/EL86, 8CW5/XL86, 10CW5/LL86, 15CW5/PL84, and 30CW5/HL84.[6][7]

CharacteristicEL84/6BQ5, N7098BQ5/XL8410BQ5/LL84EL86/6CW510CW5/LL86PL84/15CW5UL84/45B5
Basing Diagram 9CV ( pin1:ic, pin2:g1, pin3:k+g3, pin4:h, pin5:h, pin6:ic, pin7:anode, pin8:ic, pin9:g2 ) where ic=internal connection
Heater6.3 V/760 mA 8.0 V/600 mA
or 8.5 V/600 mA[8]
10.6 V/450 mA (Sylvania)
10.5 V/450 mA (RCA)
6.3 V/760 mA10.6 V/450 mA15 V/300 mA45 V/100 mA
Maximum Voltage Ratings 300 Va
300 Vg2
100 Vkf
250 Va (Philips) or 275Va (RCA, Sylvania)
250 Vg2 (Philips) or 220Vg2 (RCA, Sylvania)
200 Vkf (Philips) or 220Vkf (RCA, Sylvania)
250 Va
200 Vg2
200 Vkf
Maximum Power Ratings 12 Wa
1.75Wg2 (Philips) or 2Wg2 (RCA, Sylvania)
12 Wa (Philips) or 14Wa (RCA)
1.75Wg2 (Philips) or 2.1Wg2 (RCA, Sylvania)
Maximum Cathode Current, Ik 65 mA 100 mA
Transconductance 11.3 mA/V 11.0 mA/V
Internal (plate) resistance, Ri 38 kohms 26 kohms
Test Conditions 250 Va
250 Vg2
Ia = 48 mA
Rk = 135 ohms
170 Va
170 Vg2
Ia = 70 mA
-12.5 Vg1
Maximum Output Power
(single-ended Class A)
5.7 W
@10% THD
into 5200 ohms, 250 V supply, 4.3 VRMS input
5.3 W
@10% THD
into 2500 ohms 200 V supply, 7.0 VRMS input
Maximum Output Power
(2 tubes, push-pull Class AB)
17 W
@4% THD
into 4+4 kohms, 300 V supply, 10 VRMS input
17.5 W
@5.4% THD
into 2+2 kohms, 230 V supply, 14.6V RMS input
14.3 W
@3.8% THD
into 1.5+1.5 kohms, 200 V supply, 14.3 VRMS input
gollark: Maybe I should have picked a different one. Oh well.
gollark: I wonder if I could have used z3 for this. It's a great tool.
gollark: Probably, yes.
gollark: Have people worked out what algorithm each of them does yet? That was always a fun™ activity in past rounds.
gollark: Also, I wrote it.

References

  1. "Miniwatt" Technical Data (6th ed.). 20 Herbert Street, Artarmon, N.S.W., Australia: The "Miniwatt" Electronics Division of Philips Electrical Industries Pty. Limited. 1958. p. 158.CS1 maint: location (link)
  2. Sylvania Receiving Tubes Technical Manual (14th ed.). reprinted by Audio Amateur Press. p. 124.
  3. "A simple CV Register cross reference". Retrieved 23 May 2014.
  4. "7189A". Retrieved 25 May 2014.
  5. "7189 & 7189A Datasheets from Sylvania" (PDF). Retrieved 25 May 2014.
  6. Philips Data Handbook - Electron Tubes Part 4. Philips. 1967.
  7. "EL86 @ The National Valve Museum". Retrieved 22 May 2014.
  8. "XL84". Retrieved 23 May 2014.

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.