4-Nitrotoluene

4-Nitrotoluene or para-nitrotoluene is an organic compound with the formula CH3C6H4NO2. It is a pale yellow solid. It is one of three isomers of nitrotoluene.

4-Nitrotoluene
Names
IUPAC name
1-Methyl-4-nitrobenzene
Other names
p-nitrotoluene
p-mononitrotoluene
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.002.553
UNII
Properties
C7H7NO2
Molar mass 137.138 g·mol−1
Appearance crystalline solid[1]
Odor weak, aromatic[1]
Density 1.1038 g·cm−3 (75 °C) [2]
Melting point 51.63 °C (124.93 °F; 324.78 K)[2]
Boiling point 238.3 °C (460.9 °F; 511.4 K)[2]
0.04% (20°C)[1]
Vapor pressure 0.1 mmHg (20°C)[1]
−72.06·10−6 cm3/mol
Hazards
Flash point 106 °C; 223 °F; 379 K [1]
Explosive limits 1.6%–?[1]
Lethal dose or concentration (LD, LC):
1231 mg/kg (mouse, oral)
1960 mg/kg (rat, oral)
1750 mg/kg (rabbit, oral)[3]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 5 ppm (30 mg/m3) [skin][1]
REL (Recommended)
TWA 2 ppm (11 mg/m3) [skin][1]
IDLH (Immediate danger)
200 ppm[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Synthesis and reactions

Together with other isomers, 4-nitrotoluene is prepared by nitration of toluene.[4] It undergoes the reactions, e.g. hydrogenation gives p-toluidine.

Applications

The principle application involves its sulfonation to give the 4-nitrotoluene-2-sulfonic acid (with the SO3H group adjacent to methyl). This species can be oxidatively coupled to produce stilbene derivatives,[5] which are used as dyes.[6] Representative derivatives include the molecular and salt forms of 4,4'-dinitroso- and the 4,4'-dinitro-2,2'-stilbenedisulfonic acids, e.g. disodium 4,4'-dinitrostilbene-2,2'-disulfonate.[7]

Safety

Evidence exists for toxicity and carcinogenicity in mice.[8]

gollark: It also seems dubious that having a few tens of thousands of barely trained teenagers around is actually going to be *helpful* in a war.
gollark: It seems like you're bizarrely attached to the country you're in because of being born there or something.
gollark: Rotating GTech™ septagon array at 3.2 radians/s.
gollark: And?
gollark: And?

References

  1. NIOSH Pocket Guide to Chemical Hazards. "#0464". National Institute for Occupational Safety and Health (NIOSH).
  2. Lide DR, ed. (2004). CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data (85 ed.). Boca Ratan Florida: CRC Press. ISBN 0-8493-0485-7.
  3. "Nitrotoluene". Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. Gerald Booth (2007). "Nitro Compounds, Aromatic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_411.
  5. Cumming, William M.; Hopper, I. Vance; Wheeler, T. Sherlock (1926). "Preparation 294.Dinitro-Stilbene-Disulphonic Acid (Na salt)". Systematic Organic Chemistry: Modern Methods of Preparation and Estimation. New York: D. Van Nostrand Company. p. 314.
  6. Hunger, Klaus; Mischke, Peter; Rieper, Wolfgang; Raue, Roderich; Kunde, Klaus; Engel, Aloys (2005). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a03_245.
  7. Gerald Booth (2007). "Nitro Compounds, Aromatic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_411. ISBN 978-3527306732.
  8. National Toxicology, Program (2002). "Toxicology and carcinogenesis studies of p-nitrotoluene (CAS no. 99-99-0) in F344/N rats and B6C3F(1) mice (feed studies)". National Toxicology Program Technical Report Series (498): 1–277. PMID 12118261.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.