2017 Waco Showdown – Doubles
Michaëlla Krajicek and Taylor Townsend are the defending champions, however Krajicek chose to compete in Limoges instead.
Doubles | |
---|---|
2017 Waco Showdown | |
Champion | |
Runner-up | |
Final score | 7–5, 5–7, [11–9] |
Townsend played alongside Jessica Pegula, but they lost in the final to Sofia Kenin and Anastasiya Komardina, 7–5, 5–7, [11–9].
Seeds
Michaela Hončová / An-Sophie Mestach (Quarterfinals, withdrew) Ashley Weinhold / Caitlin Whoriskey (First round) Julia Boserup / Kayla Day (First round) Usue Maitane Arconada / María Irigoyen (Quarterfinals)
Draw
Key
- Q = Qualifier
- WC = Wild Card
- LL = Lucky Loser
- Alt = Alternate
- SE = Special Exempt
- PR = Protected Ranking
- ITF = ITF entry
- JE = Junior Exempt
- w/o = Walkover
- r = Retired
- d = Defaulted
First Round | Quarterfinals | Semifinals | Final | ||||||||||||||||||||||||
1 | 6 | 6 | |||||||||||||||||||||||||
3 | 2 | 1 | |||||||||||||||||||||||||
4 | 1 | w/o | |||||||||||||||||||||||||
6 | 6 | 1 | 2 | ||||||||||||||||||||||||
4 | 6 | 6 | 6 | 6 | |||||||||||||||||||||||
WC | 3 | 4 | 4 | 5 | 2 | ||||||||||||||||||||||
1 | 61 | 7 | 6 | ||||||||||||||||||||||||
6 | 77 | 5 | 7 | [9] | |||||||||||||||||||||||
2 | 2 | 7 | 5 | [11] | |||||||||||||||||||||||
6 | 6 | 6 | 6 | ||||||||||||||||||||||||
64 | 6 | [10] | 3 | 2 | |||||||||||||||||||||||
3 | 77 | 1 | [7] | 6 | 6 | ||||||||||||||||||||||
3 | 3 | 3 | 2 | ||||||||||||||||||||||||
6 | 6 | 3 | 6 | [11] | |||||||||||||||||||||||
4 | 6 | [10] | 6 | 2 | [13] | ||||||||||||||||||||||
2 | 6 | 4 | [8] |
gollark: The basic idea is that you can never actually perceive a world where you don't exist.
gollark: (I know all information due to Solomonoff induction.)
gollark: I already knew about this.
gollark: This is mostly irrelevant to "free will", though. Even if our brains use nondeterministic quantum processes internally, I don't see "deterministic process with RNG glued on in places" as more choice-y than something just deterministic.
gollark: I know the theory gives you probability distributions over things and not some sort of deterministic function from state at t to state at t=1, but it clearly isn't complete so there could be other things going on.
References
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.