2,4-Dichlorophenol

2,4-Dichlorophenol (2,4-DCP) is a chlorinated derivative of phenol with the molecular formula Cl2C6H3OH. It is a white solid that is mildly acidic (pKa = 7.9). It is produced on a large scale as a precursor to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D).[1]

2,4-Dichlorophenol
Skeletal formula
Ball-and-stick model
Names
Preferred IUPAC name
2,4-Dichlorophenol
Identifiers
3D model (JSmol)
742467
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.004.027
EC Number
  • 204-429-6
261170
KEGG
RTECS number
  • SK8575000
UNII
UN number 2020
Properties
C6H4Cl2O
Molar mass 163.00 g·mol−1
Appearance White solid
Odor Phenolic
Density 1.38 g/cm3
Melting point 42 to 43 °C (108 to 109 °F; 315 to 316 K)
Boiling point 209 to 210 °C (408 to 410 °F; 482 to 483 K)
5 g/100mL
Hazards
Safety data sheet External MSDS
GHS pictograms
GHS Signal word Danger
GHS hazard statements
H302, H311, H314, H411
P260, P264, P270, P273, P280, P301+312, P301+330+331, P302+352, P303+361+353, P304+340, P305+351+338, P310, P312, P321, P322, P330, P361, P363, P391, P405, P501
NFPA 704 (fire diamond)
Flash point 114 °C (237 °F; 387 K)
Lethal dose or concentration (LD, LC):
47.0 mg/kg (Oral in rats)
790.0 mg/kg (Dermal exposure in mammals)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

Production and use

2,4-DCP is produced by chlorination of phenol.[1]

Annual worldwide production is estimated at 88 million pounds.[2] It is also a photo-degradation product of the common antibacterial and antifungal agent triclosan along with the dioxin 2,8-dichlorodibenzo-p-dioxin.[3][4]

Safety

The LD50 is 580 mg/kg (rats, oral). Liquid (molten) 2,4-DCP is readily absorbed through the skin.[5] Solid 2,4-DCP does not readily absorb through skin and has a lower NFPA H=3 rating (versus H=4 for molten 2,4-DCP). This is primarily caused by instantaneous kidney failure, liver failure, and failure of various other organs.

gollark: idea: replace osmarks internet radio™ with a constant 440Hz buzzing noise.
gollark: There was some sort of US plan to have orbital nuclear-bomb-pumped X-ray lasers in orbit, but it never went anywhere.
gollark: Well, I could use the orbital laser network to knock them out of the sky beforehand.
gollark: About whatnow?
gollark: no semicolon you.

See also

References

  1. François Muller; Liliane Caillard (2011). "Chlorophenols". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a07_001.pub2.
  2. Desmurs J, Ratton S. Chlorophenols. In: Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition. Kroschwitz JI, Howe-Grant M, eds. New York: John Wiley and Sons, 1993;6:156-168
  3. Singer H, Muller S, Tixier C, Pillonel L (2002). "Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments". Environ Sci Technol. 36 (23): 4998–5004. doi:10.1021/es025750i. PMID 12523412.
  4. Latch DE, Packer JL, Stender BL, VanOverbeke J, Arnold WA, McNeill K (2005). "Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products". Environ. Toxicol. Chem. 24 (3): 517–25. doi:10.1897/04-243R.1. PMID 15779749.
  5. Kintz P, Tracqui A, Mangin P (1992). "Accidental death caused by the absorption of 2,4-dichlorophenol through the skin". Arch. Toxicol. 66 (4): 298–9. doi:10.1007/BF02307178. PMID 1514931.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.