1995 NCAA Division I Women's Volleyball Tournament
The 1995 NCAA Division I Women's Volleyball Tournament began with 48 teams and ended on December 16, 1995, when Nebraska defeated Texas 3 games to 1 in the NCAA championship match.
1995 NCAA Women's Division I Volleyball Tournament | |
---|---|
1995 NCAA Final Four logo | |
Champions | Nebraska (1st title) |
Runner-up | Texas (2nd NCAA (3rd National) title match) |
Semifinalists |
|
Winning coach | Terry Pettit (1st title) |
Final Four All-Tournament Team |
|
Nebraska defeated Texas 11-15, 15-2, 15-7, 16-14. Nebraska was led by Katie Crnich and Billie Winsett who each had 25 kills.[1] After losing its second match of the season to then-No. 1 Stanford, Nebraska reeled off 31 consecutive matches to claim the NCAA title and had the program's best season at 32-1 (.970%).[2]
Play-in games
November 25 | ||||
Middle Tenn. (OVC, 31-6) | 3 | |||
Princeton (Ivy, 29-3) | 1 | |||
November 25 | ||||
Northern Iowa (MVC, 27-1) | 3 | |||
Valparaiso (Mid-Cont., 24-9) | 0 | |||
n/a | ||||
Marshall (Southern, 24-10) | 3 | |||
Florida A&M (MEAC, 15-18) | 0 | |||
Records
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
Brackets
Pacific regional
First round | Second round | Regional Semifinal | Regional Final | |||||||||||||||
Colorado | 0 | |||||||||||||||||
Northern Iowa | 3 | |||||||||||||||||
1 | Stanford | 3 | ||||||||||||||||
Northern Iowa | 0 | |||||||||||||||||
1 | Stanford | 3 | ||||||||||||||||
Southern California | 0 | |||||||||||||||||
Southern California | 3 | |||||||||||||||||
4 | Pacific | 0 | ||||||||||||||||
Southern California | 3 | |||||||||||||||||
North Texas | 0 | |||||||||||||||||
1 | Stanford | 3 | ||||||||||||||||
Oral Roberts | 0 | |||||||||||||||||
Loyola Marymount | 2 | |||||||||||||||||
Oral Roberts | 3 | |||||||||||||||||
3 | Washington State | 0 | ||||||||||||||||
Oral Roberts | 3 | |||||||||||||||||
Oral Roberts | 3 | |||||||||||||||||
2 | Notre Dame | 0 | ||||||||||||||||
Iowa State | 1 | |||||||||||||||||
2 | Notre Dame | 3 | ||||||||||||||||
Idaho | 0 | |||||||||||||||||
Iowa State | 3 |
East regional
First round | Second round | Regional Semifinal | Regional Final | |||||||||||||||
Arkansas State | 2 | |||||||||||||||||
Texas Tech | 3 | |||||||||||||||||
1 | Florida | 3 | ||||||||||||||||
Texas Tech | 2 | |||||||||||||||||
1 | Florida | 3 | ||||||||||||||||
4 | Texas A&M | 0 | ||||||||||||||||
South Carolina | 0 | |||||||||||||||||
4 | Texas A&M | 3 | ||||||||||||||||
South Carolina | 3 | |||||||||||||||||
Hofstra | 0 | |||||||||||||||||
1 | Florida | 2 | ||||||||||||||||
2 | Texas | 3 | ||||||||||||||||
Georgia | 3 | |||||||||||||||||
Marshall | 0 | |||||||||||||||||
3 | Illinois | 3 | ||||||||||||||||
Georgia | 1 | |||||||||||||||||
3 | Illinois | 0 | ||||||||||||||||
2 | Texas | 3 | ||||||||||||||||
George Washington | 0 | |||||||||||||||||
2 | Texas | 3 | ||||||||||||||||
Middle Tennessee | 0 | |||||||||||||||||
George Washington | 3 |
Central regional
First round | Second round | Regional Semifinal | Regional Final | |||||||||||||||
George Mason | 3 | |||||||||||||||||
Indiana | 0 | |||||||||||||||||
1 | Nebraska | 3 | ||||||||||||||||
George Mason | 0 | |||||||||||||||||
1 | Nebraska | 3 | ||||||||||||||||
4 | Penn State | 1 | ||||||||||||||||
Georgia Tech | 0 | |||||||||||||||||
4 | Penn State | 3 | ||||||||||||||||
Georgia Tech | 3 | |||||||||||||||||
Siena | 0 | |||||||||||||||||
1 | Nebraska | 3 | ||||||||||||||||
2 | UCLA | 0 | ||||||||||||||||
Maryland | 3 | |||||||||||||||||
Miami (Oh.) | 0 | |||||||||||||||||
3 | Ohio State | 3 | ||||||||||||||||
Maryland | 1 | |||||||||||||||||
3 | Ohio State | 0 | ||||||||||||||||
2 | UCLA | 3 | ||||||||||||||||
Ball State | 0 | |||||||||||||||||
2 | UCLA | 3 | ||||||||||||||||
Ball State | 3 | |||||||||||||||||
Loyola (Ill.) | 0 |
Mountain regional
First round | Second round | Regional Semifinal | Regional Final | |||||||||||||||
Louisville | 3 | |||||||||||||||||
Central Florida | 1 | |||||||||||||||||
1 | Hawaiʻi | 3 | ||||||||||||||||
Louisville | 0 | |||||||||||||||||
1 | Hawaiʻi | 3 | ||||||||||||||||
4 | Arizona State | 1 | ||||||||||||||||
UCSB | 2 | |||||||||||||||||
4 | Arizona State | 3 | ||||||||||||||||
UCSB | 3 | |||||||||||||||||
South Florida | 0 | |||||||||||||||||
1 | Hawaiʻi | 2 | ||||||||||||||||
2 | Michigan State | 3 | ||||||||||||||||
Long Beach State | 3 | |||||||||||||||||
Colorado State | 0 | |||||||||||||||||
3 | San Diego State | 3 | ||||||||||||||||
Long Beach State | 1 | |||||||||||||||||
3 | San Diego State | 0 | ||||||||||||||||
2 | Michigan State | 3 | ||||||||||||||||
BYU | 0 | |||||||||||||||||
2 | Michigan State | 3 | ||||||||||||||||
Houston | 0 | |||||||||||||||||
BYU | 3 |
Final Four - Mullins Center, Amherst, Massachusetts
National Semifinals | National Championship | ||||||||
1 | Stanford | 2 | |||||||
2 | Texas | 3 | |||||||
2 | Texas | 1 | |||||||
1 | Nebraska | 3 | |||||||
1 | Nebraska | 3 | |||||||
2 | Michigan State | 2 | |||||||
gollark: > `x = _(int(0, e), int(e, е))`You may note that this would produce slices of 0 size. However, one of the `e`s is a homoglyph; it contains `2 * e`.`return Result[0][0], x, m@set({int(e, 0), int(е, e)}), w`From this, it's fairly obvious what `strassen` *really* does - partition `m1` into 4 block matrices of half (rounded up to the nearest power of 2) size.> `E = typing(lookup[2])`I forgot what this is meant to contain. It probably isn't important.> `def exponentiate(m1, m2):`This is the actual multiplication bit.> `if m1.n == 1: return Mаtrix([[m1.bigData[0] * m2.bigData[0]]])`Recursion base case. 1-sized matrices are merely multiplied scalarly.> `aa, ab, ac, ad = strassen(m1)`> `аa, аb, аc, аd = strassen(m2)`More use of homoglyph confusion here. The matrices are quartered.> `m = m1.subtract(exponentiate(aa, аa) ** exponentiate(ab, аc), exponentiate(aa, аb) ** exponentiate(ab, аd), exponentiate(ac, аa) ** exponentiate(ad, аc), exponentiate(ac, аb) ** exponentiate(ad, аd)) @ [-0j, int.abs(m2.n * 3, m1.n)]`This does matrix multiplication in an inefficient *recursive* way; the Strassen algorithm could save one of eight multiplications here, which is more efficient (on big matrices). It also removes the zero padding.> `m = exponentiate(Mаtrix(m1), Mаtrix(m2)) @ (0j * math.sin(math.asin(math.sin(math.asin(math.sin(math.e))))), int(len(m1), len(m1)))`This multiples them and I think also removes the zero padding again, as we want it to be really very removed.> `i += 1`This was added as a counter used to ensure that it was usably performant during development.> `math.factorial = math.sinh`Unfortunately, Python's factorial function has really rather restrictive size limits.> `for row in range(m.n):`This converts back into the 2D array format.> `for performance in sorted(dir(gc)): getattr(gc, performance)()`Do random fun things to the GC.
gollark: > `globals()[Row + Row] = random.randint(*sys.version_info[:2])`Never actually got used anywhere.> `ε = sys.float_info.epsilon`Also not used. I just like epsilons.> `def __exit__(self, _, _________, _______):`This is also empty, because cleaning up the `_` global would be silly. It'll be overwritten anyway. This does serve a purpose, however, and not just in making it usable as a context manager. This actually swallows all errors, which is used in some places.> `def __pow__(self, m2):`As ever, this is not actual exponentiation. `for i, (ι, 𐌉) in enumerate(zip(self.bigData, m2.bigData)): e.bigData[i] = ι + 𐌉` is in fact just plain and simple addition of two matrices.> `def subtract(forth, 𝕒, polynomial, c, vector_space):`This just merges 4 submatrices back into one matrix.> `with out as out, out, forth:`Apart from capturing the exceptions, this doesn't really do much either. The `_` provided by the context manager is not used.> `_(0j, int(0, 𝕒.n))`Yes, it's used in this line. However, this doesn't actually have any effect whatsoever on the execution of this. So I ignore it. It was merely a distraction.> `with Mаtrix(ℤ(ℤ(4))):`It is used again to swallow exceptions. After this is just some fluff again.> `def strassen(m, x= 3.1415935258989):`This is an interesting part. Despite being called `strassen`, it does not actually implement the Strassen algorithm, which is a somewhat more efficient way to multiply matrices than the naive way used in - as far as I can tell - every entry.> `e = 2 ** (math.ceil(math.log2(m.n)) - 1)`This gets the next power of two in a fairly obvious way. It is used to pad out the matrix to the next power of 2 size.> `with m:`The context manager is used again for nicer lookups.> `Result[0] += [_(0j, int(e, e))]`Weird pythonoquirkiness again. You can append to lists in tuples with `+=`, but it throws an exception as they're sort of immutable.> `typing(lookup[4])(input())`It's entirely possible that this does things.
gollark: > `def __eq__(self, xy): return self.bigData[math.floor(xy.real * self.n + xy.imag)]`This actually gets indices into the matrix. I named it badly for accursedness. It uses complex number coordinates.> `def __matmul__(self, ǫ):`*This* function gets a 2D "slice" of the matrix between the specified coordinates. > `for (fοr, k), (b, р), (whіle, namedtuple) in itertools.product(I(*int.ℝ(start, end)), enumerate(range(ℤ(start.imag), math.floor(end.imag))), (ǫ, ǫ)):`This is really just bizarre obfuscation for the basic "go through every X/Y in the slice" thing.> `out[b * 1j + fοr] = 0`In case the matrix is too big, just pad it with zeros.> `except ZeroDivisionError:`In case of zero divisions, which cannot actually *happen*, we replace 0 with 1 except this doesn't actually work.> `import hashlib`As ever, we need hashlib.> `memmove(id(0), id(1), 27)`It *particularly* doesn't work because we never imported this name.> `def __setitem__(octonion, self, v):`This sets either slices or single items of the matrix. I would have made it use a cool™️ operator, but this has three parameters, unlike the other ones. It's possible that I could have created a temporary "thing setting handle" or something like that and used two operators, but I didn't.> `octonion[sedenion(malloc, entry, 20290, 15356, 44155, 30815, 37242, 61770, 64291, 20834, 47111, 326, 11094, 37556, 28513, 11322)] = v == int(bool, b)`Set each element in the slice. The sharp-eyed may wonder where `sedenion` comes from.> `"""`> `for testing`> `def __repr__(m):`This was genuinely for testing, although the implementation here was more advanced.> `def __enter__(The_Matrix: 2):`This allows use of `Matrix` objects as context managers.> `globals()[f"""_"""] = lambda h, Ĥ: The_Matrix@(h,Ĥ)`This puts the matrix slicing thing into a convenient function accessible globally (as long as the context manager is running). This is used a bit below.
gollark: * desired
gollark: I can write some code for this if desisred.
See also
References
- Gelin, Dana (1995-12-25). "Nebraska defeated Texas in an NCAA final that proved West Coast schools no longer dominate the game". Sports Illustrated. Retrieved 2009-03-25.
- "1995: NCAA Champions". Huskers.com. 1993-12-19. Retrieved 2009-03-25.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.