15 kV AC railway electrification

Railway electrification systems using alternating current (AC) at 15 kilovolts (kV) and 16.7 Hertz (Hz) are used on transport railways in Germany, Austria, Switzerland, Sweden, and Norway. The high voltage enables high power transmission with the lower frequency reducing the losses of the traction motors that were available at the beginning of the 20th century. Railway electrification in late 20th century tends to use 25 kV, 50 Hz AC systems which has become the preferred standard for new railway electrifications but extensions of the existing 15 kV networks are not completely unlikely. In particular, the Gotthard Base Tunnel (opened on 1 June 2016) still uses 15 kV, 16.7 Hz electrification.

A pylon of a single phase AC 110 kV-powerline near Bartholomä in Germany. Lines of these type are used in Germany to supply electric railways with single phase AC at 16.7 hertz. In the substations of the railway, transformers are used to step it down to 15 kV.

Due to high conversion costs, it is unlikely that existing 15 kV, 16.7 Hz systems will be converted to 25 kV, 50 Hz despite the fact that this would reduce the weight of the on-board step-down transformers to one third that of the present devices.

History

The first electrified railways used series-wound DC motors, first at 600 V and then 1,500 V. Areas with 3 kV DC catenaries (primarily in Eastern Europe) used two 1,500 V DC motors in series. But even at 3 kV, the current needed to power a heavy train (particularly in rural and mountainous areas) can be excessive. Although increasing the transmission voltage decreases the current and associated resistive losses for a given power, insulation limits make higher voltage traction motors impractical. Transformers on each locomotive are thus required to step high transmission voltages down to practical motor operating voltages. Before the development of suitable ways to efficiently transform DC currents through power electronics, efficient transformers strictly required alternating current (AC); thus high voltage electrified railways adopted AC along with the electric power distribution system (see War of the currents).

The 50 Hz (60 Hz in North America) AC grid was already established at the beginning of the 20th century. Although series-wound motors can in principle run on AC as well as DC (the reason they are also known as universal motors) large series-wound traction motors had problems with such high frequencies. High inductive reactance of the motor windings caused commutator flashover problems and the non-laminated magnetic pole-pieces originally designed for DC exhibited excessive eddy current losses. Using a lower AC frequency alleviated both problems.

In the German-speaking countries, high-voltage electrification began at 16 23 hertz, exactly one third of the national power grid frequency of 50 Hz. This facilitated the operation of rotary converters from the grid frequency and allowed dedicated railway power generators to operate at the same shaft speed as a standard 50 Hz generator by reducing the number of pole pairs by a factor of three. For example, a generator turning at 1,000 rpm would be wound with two pole pairs rather than six.

Separate plants supply railway power in Austria, Switzerland and Germany, except for Mecklenburg-Western Pomerania and Saxony-Anhalt; converters powered by the grid supply railway power in those two German states plus Sweden and Norway. Norway also has two hydro-electric power plants dedicated for railway power with 16 23 hertz output.

The first generators were synchronous AC generators or synchronous transformers; however, with the introduction of modern double fed induction generators, the control current induced an undesired DC component, leading to pole overheating problems. This was solved by shifting the frequency slightly away from exactly ⅓ the grid frequency; 16.7 hertz was arbitrarily chosen to remain within the tolerance of existing traction motors. Austria, Switzerland and Southern Germany switched their power plants to 16.7 Hz on 16 October 1995 at 12:00 CET.[1][2] Note that regional electrified sections run by synchronous generators keep their frequency of 16 23 Hz just as Sweden and Norway still run their railway networks at 16 23 Hz throughout.

One of the disadvantages of 16.7 Hz locomotives as compared to 50 Hz or 60 Hz locomotives is the heavier transformer required to reduce the overhead line voltage to that used by the motors and their speed control gear. Low frequency transformers need to have heavier magnetic cores and larger windings for the same level of power conversion. (See effect of frequency on the design of transformers.) The heavier transformers also lead to higher axle loads than for those of a higher frequency. This, in turn, leads to increased track wear and increases the need for more frequent track maintenance. The Czech Railways encountered the problem of the reduced power handling of lower frequency transformers when they rebuilt some 25 kV AC, 50 Hz locomotives (series 340) to operate on 15 kV AC, 16.7 Hz lines. As a result of using the same transformer cores (originally designed for 50 Hz) at the lower frequency, the transformers had to be de-rated to one third of their original power handling capability, thereby reducing the available tractive effort by the same amount (to around 1,000 kW).

These drawbacks, plus the need for a separate supply infrastructure and the lack of any technical advantages with modern motors and controllers has limited the use of 16 23 Hz and 16.7 Hz beyond the original five countries. Most other countries electrified their railways at the utility frequency of 50/60 Hz. Newer European electrification is mostly 25 kV AC at 50 Hz (primarily in Eastern Europe). Conversion to this voltage/frequency requires higher voltage insulators and greater clearance between lines and bridges and other structures. This is now standard for new overhead lines as well as for modernizing old installations.

Simple European standardization with an alignment of voltage/frequency across Europe is not necessarily cost-effective since trans-border traction is more limited by the differing national standards in other areas. To equip an electric locomotive with a transformer for two or more input voltages is cheap compared to the cost of installing multiple train protection systems and to run them through the approval procedure to get access to the railway network in other countries. However, some new high-speed lines to neighbouring countries are already intended to be built to 25 kV (e.g. in Austria to Eastern Europe). Newer locomotives are always built with asynchronous motor control systems that have no problem with a range of input frequencies including DC. However the Deutsche Bahn train operator does still use older models from the standard electric locomotive series - even though some are now as much as 50 years old. As soon as these obsolescent models are decommissioned, it will be easier to standardise, but this may take a few decades to happen. Meanwhile, the Deutsche Bahn tends to order train sets that are capable of running multiple electrification systems.

Distribution networks

single-phase (two-wire) lines coming out of a converter plant

In Germany (except Mecklenburg-Western Pomerania and Saxony-Anhalt), Austria and Switzerland, there is a separate single-phase power distribution grid for railway power at 16.7 Hz; the voltage is 110 kV in Germany and Austria and 132 kV in Switzerland. This system is called the centralized railway energy supply. A separate single-phase power distribution grid makes the recuperation of energy during braking extremely easy in comparison with 25 kV 50 Hz system tied to 3 phase distribution grid.

In Sweden, Norway, Mecklenburg-Western Pomerania and Saxony-Anhalt, the power is taken directly from the three-phase grid (110 kV at 50 Hz), converted to low frequency single phase and fed into the overhead line. This system is called the decentralized (i.e. local) railway energy supply.

Generation and conversion

The centralized system is supplied by special power plants that generate 110 kV (or 132 kV in the Swiss system) AC at 16.7 Hz and by rotary converters or AC/AC converters that are supplied from the national power grid (e.g. 110 kV, 50 Hz), they convert it to 55-0-55 kV (or 66-0-66 kV) AC at 16.7 Hz. The 0 V point is connected to earth through an inductance so that each conductor of the single phase AC power line has a voltage of 55 kV (or 66 kV) with respect to earth potential. This is similar to split-phase electric power systems and results in a balanced line transmission. The inductance through which the earthing is done is designed to limit earth currents in cases of faults on the line. At the transformer substations, the voltage is transformed from 110 kV (or 132 kV) AC to 15 kV AC and the energy is fed into the overhead line.

Asynchronous converters

The frequency of 16.7 Hz depends on the necessity to avoid synchronism in parts of the rotary machine, which consists principally of a three phase asynchronous motor and a single phase synchronous generator. Since synchronism sets in at a frequency of 16 23 Hz (according to the technical details) in the single phase system, the frequency of the centralized system was set to 16.7 Hz.

Power plants providing 110 kV, 16.7 Hz, are either dedicated to generating this specific single phase AC or have special generators for the purpose, such as the Neckarwestheim nuclear power plant or the Walchensee hydroelectric power station.

Synchronous converters

The power for the decentralized system is taken directly from the national power grid and directly transformed and converted into 15 kV, 16 23 Hz by synchronous-synchronous-converters or static converters. Both systems need additional transformers. The converters consist of a three-phase synchronous motor and a single-phase synchronous generator. The decentralized system in the north-east of Germany was established by the Deutsche Reichsbahn in the 1980s, because there was no centralized system available in these areas.

Facilities for 15 kV AC railway electrification in Germany, Austria and Switzerland

Germany, Austria and Switzerland operate the largest interconnected 15 kV AC system with central generation, and central and local converter plants.

Germany

Substations

In these facilities electricity is transformed down from 110 kV-level of DB to 15 kV. There is no conversion or generation of power.

Facility Coordinates
Aalen48°49′20″N 10°02′31″E
Adelsheim49°24′57″N 9°24′17″E
Almstedt52°01′53″N 9°56′26″E
Amstetten48°34′08″N 9°52′37″E
Appenweier48°32′37″N 7°58′23″E
Aschaffenburg49°59′08″N 9°05′33″E
Aubing48°09′08″N 11°26′40″E
Augsburg48°23′54″N 10°52′0″E
Bachstedt (planned)51°03′18″N 11°11′32″E
Baden-Baden48°44′03″N 8°08′49″E
Bad Reichenhall47°44′51″N 12°54′09″E
Barnstorf52°42′26″N 8°30′40″E
Bebra50°58′32″N 9°47′23″E
Bengel50°0′34″N 7°03′23″E
Berlin-Schönefeld52°23′39″N 13°31′03″E
Biblis49°41′03″N 8°26′39″E
Bingen49°57′16″N 7°56′54″E
Böhla51°14′08″N 13°32′44″E
Boizenburg53°23′29″N 10°43′58″E
Borken ( part of converter)51°03′07″N 9°17′01″E
Borne52°06′40″N 12°32′28″E
Braunschweig52°16′09″N 10°38′24″E
Buchholz53°19′20″N 9°51′44″E
Burgdorf47°03′44″N 7°36′41″E
Burgweinting48°58′53″N 12°09′13″E
Chemnitz ( part of converter)50°51′44″N 12°56′21″E
Datteln51°37′43″N 7°20′03″E
Denkendorf48°56′19″N 11°27′19″E
Donauwörth48°42′58″N 10°45′43″E
Dörstewitz (planned)51°23′35″N 11°54′16″E
Dortmund51°30′38″N 7°24′03″E
Dortmund-Scharnhorst51°32′14″N 7°31′56″E
Dresden ( part of converter)50°59′40″N 13°50′06″E
Duisburg51°24′45″N 6°47′33″E
Düsseldorf51°13′18″N 6°50′11″E
Ebensfeld50°05′0″N 10°57′41″E
Eggolsheim49°45′10″N 11°03′27″E
Eichenberg51°22′34″N 9°55′31″E
Eilenburg51°26′48″N 12°37′08″E
Eischleben (planned)50°53′02″N 10°58′55″E
Eisenach50°57′51″N 10°22′19″E
Elmshorn53°45′45″N 9°39′17″E
Elsfleth53°16′52″N 8°28′26″E
Emden53°21′30″N 7°13′11″E
Emskirchen49°33′30″N 10°41′43″E
Essen51°27′24″N 7°01′39″E
Eutingen48°28′47″N 8°46′44″E
Eystrup52°47′32″N 9°13′45″E
Fallersleben52°25′16″N 10°40′30″E
Finnentrop51°10′03″N 7°58′01″E
Flieden50°25′08″N 9°34′18″E
Flörsheim50°0′17″N 8°24′54″E
Freiburg47°58′52″N 7°49′41″E
Friedberg50°19′28″N 8°46′25″E
Fronhausen50°41′55″N 8°41′53″E
Fulda50°32′40″N 9°41′28″E
Gabelbach48°22′45″N 10°33′35″E
Garssen52°40′30″N 10°07′44″E
Geisenbrunn48°06′29″N 11°19′51″E
Geltendorf48°06′21″N 11°01′48″E
Gemünden50°03′35″N 9°40′38″E
Genshagener Heide52°20′05″N 13°16′38″E
Gleidingen52°16′01″N 9°50′06″E
Golm52°24′10″N 12°58′08″E
Gössnitz (old)50°52′36″N 12°25′10″E
Gössnitz (new)50°54′07″N 12°25′59″E
Grafing48°02′53″N 11°56′12″E
Grönhart48°59′29″N 10°55′48″E
Grossheringen51°06′22″N 11°39′19″E
Grosskorbetha51°15′12″N 12°01′14″E
Grünauer Kreuz ( switching post)52°25′31″N 13°33′42″E
Güsen52°20′07″N 11°58′42″E
Hagen51°24′32″N 7°27′43″E
Hahn (planned)53°17′42″N 8°09′52″E
Halbe (fed from 15 kV line from Neuhof)52°07′00″N 13°41′31″E
Haltingen47°36′19″N 7°36′40″E
Hamburg-Harburg ( part of converter)53°26′57″N 10°00′02″E
Hameln52°08′26″N 9°26′43″E
Haren52°47′02″N 7°18′04″E
Heeren52°34′28″N 11°52′05″E
Herbolzheim48°13′58″N 7°46′09″E
Herchen50°46′11″N 7°31′19″E
Hessental49°05′58″N 9°46′36″E
Höchst50°06′12″N 8°33′28″E
Holzkirchen47°53′0″N 11°41′56″E
Ihringshausen51°21′07″N 9°32′14″E
Ilmenau-Wolfsberg (planned)50°41′17″N 10°59′54″E
Ingolstadt48°46′48″N 11°25′34″E
Jübek ( part of converter)54°33′25″N 9°24′35″E
Kaiserslautern49°26′16″N 7°42′19″E
Karow52°36′29″N 13°27′30″E
Karthaus49°42′28″N 6°35′28″E
Kirchheim50°52′40″N 9°35′13″E
Kirchmöser52°22′55″N 12°24′36″E
Klebitz51°56′32″N 12°50′12″E
Koblenz50°23′12″N 7°33′52″E
Köln ( part of converter)50°54′14″N 7°02′55″E
Köln-Mülheim50°58′21″N 7°01′07″E
Körle51°10′51″N 9°31′48″E
Kreiensen51°50′54″N 9°58′11″E
Kyhna51°30′42″N 12°16′50″E
Landshut48°32′48″N 12°06′31″E
Leer53°12′48″N 7°27′53″E
Lehrte ( part of converter)52°22′54″N 9°57′20″E
Leipzig-Wahren51°22′55″N 12°18′47″E
Leonberg48°47′35″N 8°58′28″E
Limburg50°22′45″N 8°05′59″E
Löhne52°11′42″N 8°42′35″E
Lüneburg53°16′01″N 10°24′42″E
Magdeburg52°09′12″N 11°39′35″E
Mainbernheim49°42′0″N 10°12′39″E
Mannheim49°26′27″N 8°33′43″E
Markt Bibart49°38′48″N 10°25′24″E
Markt Schwaben48°11′06″N 11°50′59″E
Marl ( part of converter)51°39′42″N 7°10′45″E
Meckesheim49°19′45″N 8°48′19″E
Mehrhoog51°44′55″N 6°29′57″E
Montabaur50°26′43″N 7°49′13″E
Mörlach49°11′57″N 11°14′24″E
Mottgers50°16′43″N 9°39′21″E
Mühlacker48°57′06″N 8°50′15″E
Mühlanger51°51′02″N 12°45′54″E
Muldenstein51°39′31″N 12°21′01″E
Müllheim47°48′20″N 7°35′44″E
München-Freimann48°11′56″N 11°36′30″E
München-Ost48°08′13″N 11°39′02″E
Münster51°55′25″N 7°38′05″E
Murnau47°41′19″N 11°11′33″E
Nannhofen48°12′58″N 11°11′20″E
Neckarelz49°20′21″N 9°07′0″E
Neumarkt (Oberpfalz)49°16′06″N 11°27′45″E
Neudittendorf50°54′29″N 10°53′38″E
Neuhof52°08′03″N 13°28′49″E
Neumünster54°06′33″N 9°56′49″E
Neu-Ulm ( part of converter)48°23′52″N 10°01′18″E
Niedernhausen50°09′24″N 8°19′09″E
Niemberg51°33′33″N 12°06′10″E
Nörten-Hardenberg51°38′21″N 9°56′12″E
Nürnberg ( part of converter)49°25′22″N 11°00′30″E
Nürnberg-Stein ( part of converter)49°25′47″N 11°00′19″E
Oberacker49°05′23″N 8°43′55″E
Oberdachstetten49°25′03″N 10°25′31″E
Oelde51°49′31″N 8°07′27″E
Offenbach am Main50°06′13″N 8°47′17″E
Offenburg48°27′30″N 7°55′10″E
Orscheid50°39′18″N 7°19′24″E
Osnabrück52°15′56″N 8°07′04″E
Plattling48°46′49″N 12°51′08″E
Plochingen48°43′08″N 9°23′31″E
Pretzier52°49′48″N 11°16′49″E
Pulling48°22′12″N 11°42′50″E
Rathenow52°35′26″N 12°16′39″E
Remagen50°34′06″N 7°14′35″E
Rethen52°17′29″N 9°48′47″E
Riesa51°18′41″N 13°16′0″E
Ritterhude53°11′37″N 8°45′47″E
Rödelheim50°08′29″N 8°35′49″E
Rohrbach49°58′59″N 9°42′12″E
Röhrmoos48°19′24″N 11°26′49″E
Rosenheim47°50′44″N 12°07′58″E
Rotenburg ( new)53°06′28″N 9°21′06″E
Rotenburg ( old)53°06′26″N 9°21′17″E
Roth (planned)50°22′57″N 11°02′13″E
Rottweil48°07′56″N 8°39′18″E
Rudersdorf50°50′04″N 8°8′58″E
Saalfeld50°38′42″N 11°22′35″E
Saarbrücken ( part of converter)49°14′38″N 6°58′40″E
Salzbergen52°19′42″N 7°20′39″E
Saubachtal (planned)51°12′20″N 11°32′33″E
Siegburg50°47′23″N 7°12′30″E
Sindorf50°53′34″N 6°39′14″E
Singen47°45′29″N 8°52′54″E
Solpke52°30′02″N 11°17′43″E
Sommerau48°07′39″N 8°18′41″E
Steinbach am Wald50°26′10″N 11°22′51″E
Stetzsch51°04′35″N 13°39′36″E
Stolberg50°47′29″N 6°12′06″E
Stuttgart-Rohr48°42′50″N 9°06′35″E
Stuttgart-Zazenhausen48°50′40″N 9°11′03″E
Traunstein47°52′06″N 12°37′42″E
Uelzen52°57′50″N 10°32′37″E
Urbach50°33′15″N 7°34′26″E
Vaihingen / Enz48°56′35″N 8°57′58″E
Wächtersbach50°14′44″N 9°17′18″E
Waiblingen48°49′31″N 9°17′51″E
Waigolshausen49°58′01″N 10°06′59″E
Warburg51°29′50″N 9°08′58″E
Weimar ( part of converter)50°59′27″N 11°20′34″E
Weiterstadt49°54′38″N 8°34′29″E
Werdau50°43′11″N 12°22′11″E
Wickrath51°07′15″N 6°23′44″E
Wiesbaden50°01′52″N 8°15′59″E
Wiesental49°13′19″N 8°29′48″E
Wolfratshausen47°54′30″N 11°25′32″E
Wörsdorf50°14′09″N 8°14′51″E
Wunstorf52°24′56″N 9°28′58″E
Würzburg49°48′06″N 9°53′52″E
Wurzen51°21′47″N 12°44′45″E
Wustermark52°32′26″N 12°58′25″E
Zapfendorf (shut down)50°01′33″N 10°56′29″E

Switching stations

Stations for connecting/isolating parts of the system.

Facility Coordinates
Gabelbach48°22′49″N 10°33′32″E
Kirchhellen51°37′56″N 6°57′9″E
Neckarwestheim49°2′34″N 9°12′6″E
Nenndorf53°22′35″N 9°54′13″E
Nitzahn52°27′35″N 12°20′45″E
Schönarts49°57′46″N 9°49′08″E

Central converter plants

In these facilities the AC from the public grid is transformed and converted into the single phase AC and fed into the railway current distribution grid. At some facilities, power is also fed to the overhead line. Conversion is done by rotary converters or electronic inverters.

Facility Year of commissioning Power Technology Coordinates
Aschaffenburg201060 MWGTO-Thyristor49°59′08″N 9°05′33″E
Borken196350 MWRotary converter51°3′7″N 9°17′01″E
Bremen100 MWGTO-thyristor53°7′49″N 8°40′49″E
Chemnitz1965Rotary converter50°51′42″N 12°56′18″E
Dresden1977Rotary converter50°59′40″N 13°50′6″E
Düsseldorf30 MWGTO-thyristor51°13′18″N 6°50′11″E
Hamburg-HarburgRotary converter53°26′55″N 10°0′6″E
Jübek14 MWGTO-thyristor54°33′25″N 9°24′34″E
Karlsfeld100 MWGTO-thyristor48°12′57″N 11°26′06″E
Karlsruhe195753 MWRotary converter48°58′49″N 8°22′34″E
Köln195775 MWRotary converter50°54′14″N 7°2′55″E
Lehrte1963 (rotary converter)/ 2010 (inverter)37 MW (rotary converter)/ 64 MW (inverter)Rotary converter/ inverter52°22′54″N 9°57′15″E
Limburg120 MWIGCT inverter50°24′20″N 8°3′58″E
Marl196325 MWRotary converter51°39′40″N 7°10′47″E
Neckarwestheim1989140 MWRotary converter49°2′22″N 9°10′40″E
Neckarwestheim II2011140 MWGTO-thyristor48°2′16″N 9°10′40″E
Neu-UlmRotary converter48°23′51″N 10°1′16″E
Nürnberg193934Rotary converter49°25′48″N 11°0′18″E
Nürnberg201275IGBT-Inverter49°25′48″N 11°0′18″E
Pforzheim (shut down) Rotary converter
SaarbrückenRotary converter49°14′37″N 6°58′35″E
Singen (shut down in 2002)Rotary converter47°45′29″N 8°52′54″E
Thyrow2004/20058×15 = 120 MWGTO-thyristor52°14′0″N 13°18′10″E
Weimar1973Rotary converter50°59′27″N 11°20′34″E

Local converter plants

In these facilities the AC from the public grid is transformed and converted into the single phase AC and fed to the overhead line. Conversion is done by rotary converters or electronic inverters.

Facility Year of commissioning Power Technology Coordinates
Adamsdorf1984Rotary converter53°24′31″N 13°2′43″E
AnklamRotary converter53°50′46″N 13°43′0″E
Berlin-Rummelsburg1984Rotary converter52°29′12″N 13°30′33″E
Bützow (demolished)Rotary converter53°49′30″N 11°59′3″E
Cottbus1989Rotary converter51°45′0″N 14°17′12″E
Doberlug-Kirchhain1981 (Rotary converter), 2008 (Inverter)Inverter51°38′49″N 13°34′51″E
Eberswalde1987Rotary converter52°50′40″N 13°48′1″E
Falkenberg1987Rotary converter51°34′50″N 13°15′26″E
OderRotary converter52°21′17″N 14°28′42″E
LalendorfRotary converter53°45′15″N 12°23′54″E
Löwenberger LandRotary converter52°54′5″N 13°11′18″E
Ludwigsfelde1981Rotary converter52°18′17″N 13°16′31″E
Lübeck-Genin2008Inverter?
Magdeburg (shut down)1974Rotary converter52°9′14″N 11°39′40″E
Neustadt (Dosse)Rotary converter52°50′51″N 12°27′24″E
OberröblingenRotary converter51°26′42″N 11°17′44″E
PrenzlauRotary converter53°19′59″N 13°52′21″E
RosslauRotary converter51°53′51″N 12°14′29″E
Rostock1985Rotary converter54°3′54″N 12°8′39″E
Schwerin1987Rotary converter53°35′39″N 11°23′11″E
Senftenberg1988Rotary converter51°31′58″N 14°1′14″E
StendalRotary converter52°35′0″N 11°52′7″E
StralsundRotary converter54°17′9″N 13°5′23″E
Wittenberg1978Rotary converter51°52′30″N 12°41′20″E
Wittenberge1987Rotary converter52°59′46″N 11°46′8″E
WolkramshausenInverter51°26′19″N 10°44′8″E
Wünsdorf1982Rotary converter52°10′24″N 13°27′42″E
WustermarkRotary converter52°32′33″N 12°58′25″E

Power plants

Facility Year of commissioning Power Type State Coordinates
Bad Abbach 2000 3.5 MW Hydroelectric power plant Bavaria 48°56′47″N 12°00′47″E
Aufkirchen Hydroelectric power plant Bavaria 48°18′19″N 11°51′29″E
Bad Reichenhall 1912 7.2 MW Hydroelectric power plant Bavaria 47°43′4″N 12°51′47″E
Bergheim 1970 23.7 MW Hydroelectric power plant Bavaria 48°45′2″N 11°16′23″E
Bertoldsheim 1967 18.9 MW Hydroelectric power plant Bavaria 48°44′8″N 11°1′14″E
Bittenbrunn 1969 20.2 MW Hydroelectric power plant Bavaria 48°44′4″N 11°8′37″E
Datteln Coal-fired power plant North Rhine-Westphalia 51°37′43″N 7°19′50″E
Eitting Hydroelectric Power Plant Hydroelectric power plant Bavaria 48°21′31″N 11°52′56″E
Ingolstadt 1971 19.8 MW Hydroelectric power plant Bavaria 48°45′1″N 11°24′43″E
Kammerl 1905 Hydroelectric power plant Bavaria 47°39′42″N 10°59′12″E
Kirchmöser 160 MW Gas turbine power plant Brandenburg 52°23′39″N 12°25′5″E
Langenprozelten 1976 160 MW Hydroelectric power plant Bavaria 50°3′11″N 9°34′52″E
Lausward 1957 520 MW Gas turbine power plant North Rhine-Westphalia 51°13′16″N 6°43′58″E
Lünen 1984 110 MW Coal-fired power plant North Rhine-Westphalia 51°36′59″N 7°28′44″E
Mannheim 1955 190 MW Coal-fired power plant Baden-Württemberg 49°26′45″N 8°29′27″E
Muldenstein (retired) 1912 11.3 MW Coal-fired power plant Saxony-Anhalt 51°39′25″N 12°20′59″E
Mittelsbüren 110 MW Coal-fired power plant Bremen 53°7′43″N 8°41′7″E
Neckarwestheim I 1976 190 MW Nuclear power plant Baden-Württemberg 49°2′25″N 9°10′18″E
Pfrombach Hydroelectric power plant Bavaria 48°26′28″N 11°59′34″E
Vohburg Hydroelectric power plant Bavaria 48°46′40″N 11°36′4″E
Walchensee 1924 Hydroelectric power plant Bavaria 47°37′48″N 11°20′17″E

Points where two powerlines for traction current crosses each other without interconnection

Lines Coordinates
Flieden-Bebra / Fulda-Mottgers50°28′55″N 9°40′52″E
Bebra-Borken / Kirchheim-Körle51°01′59″N 9°34′31″E
Karlsruhe-Mühlacker /Vaihingen-Graben/Neudorf48°56′40″N 8°48′18″E
Orscheid-Köln / Orscheid-Montabaur50°39′15″N 7°19′28″E
Mannheim-Neckarelz / Mannheim-Wiesental49°25′38″N 8°34′9″E

Border-crossing power lines

Germany – Austria

Line Coordinates
Walchenseekraftwerk – Zirl47°23′55″N 11°15′53″E
Traunstein – Steinsdorf47°53′20″N 12°58′25″E

Former border between West and East Germany

Line Coordinates
Lehrte – Heeren52°24′48″N 10°59′34″E
Bebra – Weimar51°00′29″N 10°12′13″E
Steinfeld am Wald – Saalfeld50°27′52″N 11°25′07″E

Switzerland

Substations

In these facilities electricity is transformed down from 132 kV or 66 kV to 15 kV. There is no conversion or generation of power.

Facility Coordinates
Balerna45°50′52″N 9°00′11″E
Biel47°7′48″N 7°15′26″E
Brugg47°28′28″N 8°12′16″E
Burgdorf47°03′44″N 7°36′41″E
Bussigny46°32′38″N 6°33′36″E
Chur (RhB)46°52′24″N 9°31′57″E
Croy46°42′00″N 6°28′33″E
Courtemaîche47°27′21″N 7°3′20″E
Delémont47°21′49″N 7°21′30″E
Eglisau47°34′22″N 8°30′50″E
Emmenbrücke47°4′4″N 8°17′9″E
Etzwilen47°39′42″N 8°49′7″E
Farsch46°49′25″N 9°23′59″E
Filisur (RhB)46°40′19″N 9°41′36″E
Flüelen46°53′43″N 8°37′29″E
Fribourg46°48′50″N 7°9′15″E
Frutigen46°34′48″N 7°38′56″E
Gampel46°18′28″N 7°45′24″E
Genève-Tuleries46°14′59″N 6°8′48″E
Giornico46°24′5″N 8°52′23″E
Gland46°24′52″N 6°15′48″E
Hendschiken47°23′29″N 8°12′16″E
Kandersteg46°30′10″N 7°40′28″E
Küblis (RhB)46°54′56″N 9°45′33″E
Melide45°57′59″N 8°56′54″E
Muttenz47°32′5″N 7°38′38″E
Neuchâtel46°59′25″N 6°54′56″E
Killwangen47°26′13″N 8°20′38″E
Olten47°21′40″N 7°55′20″E
Puidoux46°29′21″N 6°45′41″E
Rapperswil SG47°13′29″N 8°49′55″E
Rivera46°7′32″N 8°55′27″E
Roche46°21′52″N 6°55′28″E
Romont FR46°41′4″N 6°54′23″E
Rotkreuz47°8′42″N 8°26′27″E
Sagliains (RhB)46°45′44″N 10°05′39″E
Saint Léonard46°15′8″N 7°25′21″E
Sankt Margrethen47°27′12″N 9°38′22″E
Sargans47°2′26″N 9°27′8″E
Seebach47°25′20″N 8°33′17″E
Selfranga (RhB)46°51′20″N 9°53′03″E
Sihlbrugg47°14′34″N 8°34′37″E
Sils (RhB)46°42′8″N 9°28′8″E
Stein AG47°32′29″N 7°57′59″E
Steinen47°2′53″N 8°36′17″E
Tavanasa (RhB)46°45′09″N 9°02′42″E
Thun46°46′20″N 7°35′53″E
Varzo ( Italy, operated by SBB)46°12′25″N 8°14′31″E
Wanzwil47°11′49″N 7°41′40″E
Wetzikon ZH47°18′35″N 8°47′56″E
Winterthur-Grüze47°30′0″N 8°45′4″E
Yverdon46°46′03″N 6°38′51″E
Ziegelbrücke47°7′59″N 9°3′55″E
Zürich47°22′52″N 8°31′19″E

Central converter plants

In these facilities the AC from public grid is transformed and converted into the single phase AC and fed into the railway current distribution grid. At some facilities, power is also fed to the overhead line. Conversion is done by rotary converters or electronic inverters.

Facility Year of commissioning Power Technology used Coordinates
Bever (RhB)4,6 MWRotary converter46°32′52″N 9°53′17″E
Landquart (RhB)5 MWRotary converter46°58′28″N 9°33′6″E
GiubiascoRotary converter46°10′32″N 9°0′9″E
KerzersRotary converter46°58′27″N 7°11′25″E
MassabodenRotary converter46°19′55″N 8°0′42″E
RupperswilRotary converter47°24′21″N 8°6′19″E
SeebachRotary converter47°25′20″N 8°33′17″E
WimmisRotary converter46°40′51″N 7°39′23″E

Switching stations

Stations for connecting/isolating parts of the system.

Facility Coordinates
Zollikofen47°0′45″N 7°27′53″E

Power plants

Facility Year of commissioning Power Type Coordinates
Amsteg192255 MWHydroelectric power plant46°46′4″N 8°40′18″E
Le Châtelard VSHydroelectric power plant46°3′41″N 6°57′29″E
EtzelwerkHydroelectric power plant47°11′42″N 8°48′42″E
GöschenenHydroelectric power plant46°40′2″N 8°35′3″E
Klosters (RhB)8.5 MW Hydroelectric power plant46°51′39″N 9°53′44″E
Gösgen51,3 MWHydroelectric power plant47°22′8″N 7°58′47″E
Lungerersee19949 MWHydroelectric Power Plant46°49′20.51″N 8°10′25.52″E
Massaboden19167,2 MWHydroelectric power plant46°19′55″N 8°0′42″E
Mühleberg192145 MWHydroelectric power plant46°58′9″N 7°17′4″E
Ritom1920Hydroelectric power plant46°31′2″N 8°40′33″E
Rupperswil1945Hydroelectric power plant47°24′42″N 8°6′52″E
VernayazHydroelectric power plant46°8′3″N 7°2′10″E
WassenHydroelectric power plant46°42′56″N 8°36′36″E

Points, where two powerlines for traction current crosses each other without interconnection

Lines Coordinates
Bussigny-Croy / Romanel-Les Tuileries46°33′45″N 6°31′45″E
Puidoux-Kerzers / Bussigny-Chamoson46°32′09″N 6°48′11″E
Puidoux-Vernayaz/ Bussigny-Chamoson46°22′07″N 6°55′23″E
Puidoux-Vernayaz/ Bussigny-Chamoson46°10′26″N 7°01′50″E
Puidoux-Vernayaz/ Vernayaz Branch46°08′48″N 7°02′16″E
Vernayaz-Brig/ Bussigny-Chamoson46°06′52″N 7°05′55″E

Border-crossing power lines

Germany–Switzerland

Line Coordinates
Holdingen – Muttenz47°34′53″N 07°36′14″E
Singen – Etzwilen47°42′49″N 08°49′52″E

Austria

Substations

In these facilities electricity is transformed down from 110 kV to 15 kV. No conversion or generation of power takes place.

Facility Coordinates
Absdorf48°23′52″N 15°59′38″E
Angern48°22′56″N 16°49′19″E
Amstetten (Österreich)48°7′9″N 14°53′7″E
Asten48°14′2″N 14°24′20″E
Attnang-Puchheim48°1′8″N 13°43′38″E
Bad Vöslau47°58′06″N 16°13′28″E
Bludenz47°8′41″N 9°49′44″E
Bruck Mur47°25′42″N 15°16′26″E
Dölsach46°48′53″N 12°49′55″E
Dorfgastein47°14′5″N 13°6′17″E
Elsbethen47°45′9″N 13°5′4″E
Feldkirch47°15′8″N 9°37′4″E
Florisdorf48°15′42″N 16°24′19″E
Fritzens-Wattens47°18′6″N 11°35′48″E
Gaisbach Wartberg48°19′51″N 14°29′52″E
Golling-Abtenau47°35′53″N 13°9′53″E
Göpfritz48°43′48″N 15°23′29″E
Gries am Brenner47°2′36″N 11°29′9″E
Götzendorf48°1′34″N 16°34′59″E
Graz47°04′40″N 15°24′48″E
Haag48°05′33″N 14°35′36″E
Hohenau
Hütteldorf48°11′43″N 16°16′17″E
Kitzbühel47°28′52″N 12°22′59″E
Küpfern47°51′9″N 14°37′3″E
Landeck47°9′8″N 10°35′11″E
Mallnitz46°58′40″N 13°10′44″E
Marchtrenk48°12′11″N 14°6′11″E
Mariahof47°06′16″N 14°22′28″E
Matrei47°7′38″N 11°27′11″E
Meidling48°10′30″N 16°20′29″E
Mistelbach48°33′51″N 16°33′33″E
Münster
Parndorf47°59′45″N 16°50′33″E
Pettneu47°08′55″N 10°21′46″E
Pusarnitz46°50′5″N 13°24′17″E
Riedau48°18′31″N 13°37′37″E
Rohr48°11′15″N 15°25′47″E
Sankt Johann im Pongau47°20′10″N 13°11′23″E
Sankt Pölten48°13′55″N 15°39′19″E
Sankt Veit46°45′39″N 14°22′28″E
Schladming47°23′38″N 13°40′43″E
Schlöglmühl47°40′57″N 15°54′46″E
Semmering47°37′36″N 15°48′53″E
Wien-Simmering48°09′05″N 16°25′37″E
Steindorf47°58′0″N 13°14′24″E
Tulln48°19′24″N 16°2′37″E
Unterberg47°12′50″N 11°23′32″E
Villach46°35′42″N 13°49′55″E
Wald am Schoberpass47°27′5″N 14°40′7″E
Wartberg an der Krems47°59′21″N 14°7′18″E
Wegscheid48°14′16″N 14°16′3″E
Wiener Neustadt47°47′54″N 16°13′13″E
Wörgl47°29′58″N 12°4′19″E
Zellerndorf48°41′31″N 15°58′9″E
Zirl (old)47°15′53″N 11°13′59″E
Zirl (neu)47°15′55″N 11°13′18″E

Central converter plants

In these facilities the AC from the public grid is transformed and converted into the single phase AC and fed into the railway current distribution grid. At some facilities, power is also fed to the overhead line. Conversion is done by rotary converters or electronic inverters.

Facility Year of commissioning Power Coordinates
Auhof195690 MW48°12′00″N 16°14′12″E
Bergern198348°13′3″N 15°16′17″E
Haiming199547°14′47″N 10°52′27″E
Kledering198948°8′21″N 16°25′56″E
Sankt Michael197547°21′27″N 15°0′9″E

Power plants

Facility Year of commissioning Power Type Coordinates
Annabrücke20 MWHydroelectric power plant46°33′39″N 14°28′46″E
Braz195420 MWHydroelectric power plant47°8′0″N 9°56′45″E
Enzigerboden20 MWHydroelectric power plant47°10′10″N 12°37′36″E
Fulpmes198315 MWHydroelectric power plant47°9′30″N 11°21′29″E
ObervellachHydroelectric power plant46°56′13″N 13°11′29″E
Schaltposten SchönbergHydroelectric power plant47°12′02″N 11°23′29″E
Sankt PantaleonHydroelectric power plant48°13′29″N 14°31′50″E
SchneiderauHydroelectric power plant47°11′50″N 12°36′28″E
Spullersee192536 MWHydroelectric power plant47°7′58″N 10°3′16″E
Steeg1910Hydroelectric power plant (only direct fed of overhead wire)47°36′29″N 13°37′57″E
UttendorfHydroelectric power plant47°15′43″N 12°34′3″E
WeyerHydroelectric power plant47°51′07″N 14°38′19″E

Points, where two powerlines for traction current crosses each other without interconnection

Lines Coordinates
Sankt Johann im Pongau-Bruck/Fusch / Sankt Johann im Pongau-Selzthal47°20′09″N 13°11′27″E
Sankt Johann im Pongau-Uttendorf / Sankt Johann im Pongau-Mallnitz47°20′01″N 13°11′17″E
Sankt Johann im Pongau-Bruck/Fusch / Sankt Johann im Pongau-Mallnitz47°17′47″N 13°04′24″E
Sankt Johann im Pongau-Schneiderau / Bruck/Fusch-Uttendorf47°15′46″N 12°33′59″E
Sankt Johann im Pongau-Schneiderau / Uttendorf-Kitzbühl47°15′45″N 12°33′59″E
Sankt Johann im Pongau-Schneiderau / Uttendorf-Kitzbühl47°15′44″N 12°33′59″E
Bruck/Fusch-Enzingerboden / Uttendorf-Kitzbühl47°15′45″N 12°33′55″E
Uttendorf-Enzingerboden, Schneiderau Branch / Schneiderau-Enzingerboden47°11′49″N 12°36′28″E
Uttendorf-Enzingerboden / Schneiderau-Enzingerboden47°10′39″N 12°37′34″E
Uttendorf-Enzingerboden / Schneiderau-Enzingerboden47°11′38″N 12°37′00″E

Norway

In Norway all electric railways use 16 kV 1623 Hz AC [3] (except the Thamshavnbanen museum railway which uses 6.6 kV 25 Hz AC). The Oslo T-bane and tramways use 750 V DC power.

Sweden

In Sweden most electric railways use 15 kV 1623 Hz AC. Exceptions include: Saltsjöbanan and Roslagsbanan (1.5 kV DC), the Stockholm Metro (650 V and 750 V DC) and tramways (750 V DC). The Oresund Bridge linking Sweden and Denmark is electrified at 25 kV, Danish standard; the split is located on the Swedish side near the bridge. Only two-system trains (or diesel trains; rare) can pass the point.

gollark: <@319753218592866315> That is impossible as my internet connection is 7.3 nanoapioarboreoforms (new data has arrived indicating this).
gollark: Well, OC has addons for python, MIPS and ARM assembly.
gollark: How about apioHAZARDS?
gollark: <@213674115700097025> apioforms.
gollark: My current plan has exactly zero.

See also

References

  1. Bahnstromsystem (German) railway electrification systems
  2. C. Linder (2002). "Umstellung der Sollfrequenz im zentralen Bahnstromnetz von 16 23 Hz auf 16,70 Hz" [Switching the frequency in train electric power supply network from 16 2/3 Hz to 16,70 Hz]. Elektrische Bahnen (in German). 12. ISSN 0013-5437.
  3. "Bane Energi". jernbaneverket. Archived from the original on 5 October 2015. Retrieved 29 July 2015.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.