Θ (set theory)

In set theory, Θ (pronounced like the letter theta) is the least nonzero ordinal α such that there is no surjection from the reals onto α.

If the axiom of choice (AC) holds (or even if the reals can be wellordered), then Θ is simply , the cardinal successor of the cardinality of the continuum. However, Θ is often studied in contexts where the axiom of choice fails, such as models of the axiom of determinacy.

Θ is also the supremum of the lengths of all prewellorderings of the reals.

Proof of existence

It may not be obvious that it can be proven, without using AC, that there even exists a nonzero ordinal onto which there is no surjection from the reals (if there is such an ordinal, then there must be a least one because the ordinals are wellordered). However, suppose there were no such ordinal. Then to every ordinal α we could associate the set of all prewellorderings of the reals having length α. This would give an injection from the class of all ordinals into the set of all sets of orderings on the reals (which can to be seen to be a set via repeated application of the powerset axiom). Now the axiom of replacement shows that the class of all ordinals is in fact a set. But that is impossible, by the Burali-Forti paradox.


gollark: Dendrite is somewhat faster but still very resource hungry versus an IRC server or bouncer, and it lacks features.
gollark: There's one feature complete usable one.
gollark: Although that might just be XMPP.
gollark: One vague idea I had which will never be implemented is something like IRC but with global email-like identity and server side history.
gollark: Matrix server software also seems to be hilariously complex and slow.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.