User:Tag365
5e April Fools Races
Name | Summary
{{#dpl: debug=1 |
category=5e | category=User | category=Race | category=Pokémon franchise | notcategory=! | notcategory=Supplement | notcategory=List | include={5e Racial Traits}:summary | mode=userformat | format=,¦- class="²{Odd-Even¦²{#var:odd}²}²"\n¦ [[%PAGE%¦²{#replace:%PAGE%¦(5e Race)¦}²]],\n, | tablerow=¦¦ %%, %%\n
}} |
---|
3.5e Pokémon Races
Name | Summary
{{#dpl: debug=1 |
category=3.5e | category=User | category=Race | category=Pokémon franchise | notcategory=! | notcategory=Supplement | notcategory=List | include={3.5e Racial Traits}:summary | mode=userformat | format=,¦- class="²{Odd-Even¦²{#var:odd}²}²"\n¦ [[%PAGE%¦²{#replace:%PAGE%¦(5e Race)¦}²]],\n, | tablerow=¦¦ %%, %%\n
}} |
---|
3.5e April Fools Races
Name | Summary
{{#dpl: debug=1 |
category=3.5e | category=User | category=Race | category=April Fools | notcategory=! | notcategory=Supplement | notcategory=List | include={3.5e Racial Traits}:summary | mode=userformat | format=,¦- class="²{Odd-Even¦²{#var:odd}²}²"\n¦ [[%PAGE%¦²{#replace:%PAGE%¦(5e Race)¦}²]],\n, | tablerow=¦¦ %%, %%\n
}} |
---|
3.5e April Fools Classes
Name | Summary
{{#dpl: debug=1 |
category=3.5e | category=User | category=Class | category=April Fools | notcategory=! | notcategory=Supplement | notcategory=List | include={3.5e Racial Traits}:summary | mode=userformat | format=,¦- class="²{Odd-Even¦²{#var:odd}²}²"\n¦ [[%PAGE%¦²{#replace:%PAGE%¦(5e Race)¦}²]],\n, | tablerow=¦¦ %%, %%\n
}} |
---|
gollark: I may be explaining this slightly terribly, but it lets you differentiate functions of functions of x (or whatever you're differentiating with respect to).
gollark: Rewrite that as e^(some function of x), apply chain rule.
gollark: What do you mean? As in, if it involves 1/x or something like this? That's what the chain rule is for.
gollark: This can also be written as a function of x explicitly if you want (it is one implicitly).
gollark: It's the same. If you say "y = whatever (in terms of x), dy/dx = derivative of whatever (in terms of x)", this is equivalent to saying "f(x) = whatever (still in terms of x), f'(x) = derivative of whatever (in terms of x)".
This article is issued from Dandwiki. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.