3e SRD:Constrict

This material is published under the OGL

Constrict

The creature crushes the opponent, dealing bludgeoning damage, after making a successful grapple check. The amount of damage is given in the creature’s entry. If the creature also has the improved grab ability, it deals constriction damage in addition to damage dealt by the weapon used to grab.


Back to Main Page 3e Open Game Content System Reference Document Special Abilities

Open Game Content (place problems on the discussion page).
This is part of the (3e) System Reference Document. It is covered by the Open Game License v1.0a, rather than the GNU Free Documentation License 1.3. To distinguish it, these items will have this notice. If you see any page that contains SRD material and does not show this license statement, please contact an admin so that this license statement can be added. It is our intent to work within this license in good faith.
gollark: I mean, what do you expect to happen if you do something unsupported and which creates increasingly large problems each time you do it?
gollark: <@151391317740486657> Do you know what "unsupported" means? PotatOS is not designed to be used this way.
gollark: Specifically, 22 bytes for the private key and 21 for the public key on ccecc.py and 25 and 32 on the actual ingame one.
gollark: <@!206233133228490752> Sorry to bother you, but keypairs generated by `ccecc.py` and the ECC library in use in potatOS appear to have different-length private and public keys, which is a problem.EDIT: okay, apparently it's because I've been accidentally using a *different* ECC thing from SMT or something, and it has these parameters instead:```---- Elliptic Curve Arithmetic---- About the Curve Itself-- Field Size: 192 bits-- Field Modulus (p): 65533 * 2^176 + 3-- Equation: x^2 + y^2 = 1 + 108 * x^2 * y^2-- Parameters: Edwards Curve with c = 1, and d = 108-- Curve Order (n): 4 * 1569203598118192102418711808268118358122924911136798015831-- Cofactor (h): 4-- Generator Order (q): 1569203598118192102418711808268118358122924911136798015831---- About the Curve's Security-- Current best attack security: 94.822 bits (Pollard's Rho)-- Rho Security: log2(0.884 * sqrt(q)) = 94.822-- Transfer Security? Yes: p ~= q; k > 20-- Field Discriminant Security? Yes: t = 67602300638727286331433024168; s = 2^2; |D| = 5134296629560551493299993292204775496868940529592107064435 > 2^100-- Rigidity? A little, the parameters are somewhat small.-- XZ/YZ Ladder Security? No: Single coordinate ladders are insecure, so they can't be used.-- Small Subgroup Security? Yes: Secret keys are calculated modulo 4q.-- Invalid Curve Security? Yes: Any point to be multiplied is checked beforehand.-- Invalid Curve Twist Security? No: The curve is not protected against single coordinate ladder attacks, so don't use them.-- Completeness? Yes: The curve is an Edwards Curve with non-square d and square a, so the curve is complete.-- Indistinguishability? No: The curve does not support indistinguishability maps.```so I might just have to ship *two* versions to keep compatibility with old signatures.
gollark: > 2. precompilation to lua bytecode and compressionThis was considered, but the furthest I went was having some programs compressed on disk.
This article is issued from Dandwiki. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.