Telegraph
Telegraph is a pattern constructed by Jason Summers in February 2003. It uses complex glider construction recipes to send information at lightspeed along a chain of beehives at a rate of one bit per 1440 ticks. A single reburnable reaction is fairly small, and it produces the same chain of beehives as output that it consumes as input. However, it requires a series of ten of these signals in five mirror-image pairs to restore the beehive fuse to its exact original location:
<html><div class="rle"><div class="codebox"><div style="display:none;"><code></html>x = 1290, y = 10, rule = B3/S23
19bo629bo629bo$17bo3bo125bo127bo126bo118b3o123bo3bo125bo127bo126bo118b
3o123bo3bo$7b2ob2o4bo4bo111bo4bo4bo4b2o119b2o3bobo56bo59b5o4bo110bo6b
5o112b2ob2o4bo4bo111bo4bo4bo4b2o119b2o3bobo56bo59b5o4bo110bo6b5o112b2o
b2o4bo4bo$b2o3b6o3bo6bo55b2o8bo4b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3bo5bo
2b2o4b2o48bo6b3o7b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o2b2o4b4o2bo50b2ob
2o4bo10b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2ob3o4bo2bo2bo49bo4bo15b2o3b2o
3b2o3b2o3b2o3b2o3b2o3b2o3b6o4b2obo2bo70b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o
3b6o3bo6bo55b2o8bo4b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3bo5bo2b2o4b2o48bo6b
3o7b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o2b2o4b4o2bo50b2ob2o4bo10b2o3b2o
3b2o3b2o3b2o3b2o3b2o3b2o3b2ob3o4bo2bo2bo49bo4bo15b2o3b2o3b2o3b2o3b2o3b
2o3b2o3b2o3b6o4b2obo2bo70b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b6o3bo6bo$o2b
obo6bo2bo6bo4b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2ob3o4bo2b2o6b2o2bo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo6bob3o5b2o3b2o3b2o3b2o3b2o3b2o3b2o
3b2o3b2o3b6o4b6o5b2o2bo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob2o4b2obo
2bo5bo3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b6o3bo5b2o3bo2bobo2bobo2bobo2bo
bo2bobo2bobo2bobo2bobo2bo3bo2bo5b2o5bo3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o
3bo5bo2b2o4b2o3bo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo6bo2b2o2bob2o
4b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o2b2o4b4obo4b3o2bo2bobo2bobo2bobo2b
obo2bobo2bobo2bobo2bobo6bo2bo6bo4b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2ob
3o4bo2b2o6b2o2bo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo6bob3o5b2o3b2o
3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b6o4b6o5b2o2bo2bobo2bobo2bobo2bobo2bobo2b
obo2bobo2bob2o4b2obo2bo5bo3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b6o3bo5b2o
3bo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bo3bo2bo5b2o5bo3b2o3b2o3b
2o3b2o3b2o3b2o3b2o3b2o3bo5bo2b2o4b2o3bo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo6bo2b2o2bob2o4b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o2b2o4b4obo
4b3o2bo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo6bo2bo6bo4b2o$b2o3b6o3b
o5b2o3bo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bo3bo2bo5b2o5bo3b2o3b
2o3b2o3b2o3b2o3b2o3b2o3b2o3bo5bo2b2o4b2o3bo2bobo2bobo2bobo2bobo2bobo2b
obo2bobo2bobo6bo2b2o2bob2o4b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o2b2o4b4o
bo4b3o2bo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo6bo2bo6bo4b2o3b2o3b2o
3b2o3b2o3b2o3b2o3b2o3b2ob3o4bo2b2o6b2o2bo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo6bob3o5b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b6o4b6o5b2o2bo2b
obo2bobo2bobo2bobo2bobo2bobo2bobo2bob2o4b2obo2bo5bo3b2o3b2o3b2o3b2o3b
2o3b2o3b2o3b2o3b6o3bo5b2o3bo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2b
o3bo2bo5b2o5bo3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3bo5bo2b2o4b2o3bo2bobo2b
obo2bobo2bobo2bobo2bobo2bobo2bobo6bo2b2o2bob2o4b2o3b2o3b2o3b2o3b2o3b2o
3b2o3b2o3b2o2b2o4b4obo4b3o2bo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
6bo2bo6bo4b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2ob3o4bo2b2o6b2o2bo2bobo2bo
bo2bobo2bobo2bobo2bobo2bobo2bobo6bob3o5b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o
3b2o3b6o4b6o5b2o2bo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob2o4b2obo2bo
5bo3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b6o3bo5b2o3bo2bo$7b2ob2o4bo10b2o3b
2o3b2o3b2o3b2o3b2o3b2o3b2o3b2ob3o4bo2bo2bo49bo4bo15b2o3b2o3b2o3b2o3b2o
3b2o3b2o3b2o3b6o4b2obo2bo70b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b6o3bo6bo
55b2o8bo4b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3bo5bo2b2o4b2o48bo6b3o7b2o3b2o
3b2o3b2o3b2o3b2o3b2o3b2o3b2o2b2o4b4o2bo50b2ob2o4bo10b2o3b2o3b2o3b2o3b
2o3b2o3b2o3b2o3b2ob3o4bo2bo2bo49bo4bo15b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o
3b6o4b2obo2bo70b2o3b2o3b2o3b2o3b2o3b2o3b2o3b2o3b6o3bo6bo55b2o8bo4b2o3b
2o3b2o3b2o3b2o3b2o3b2o3b2o3bo5bo2b2o4b2o48bo6b3o7b2o3b2o3b2o3b2o3b2o3b
2o3b2o3b2o3b2o2b2o4b4o2bo50b2ob2o4bo10b2o$18bo59b5o4bo110bo6b5o112b2ob
2o4bo4bo111bo4bo4bo4b2o119b2o3bobo56bo59b5o4bo110bo6b5o112b2ob2o4bo4bo
111bo4bo4bo4b2o119b2o3bobo56bo$87bo118b3o123bo3bo125bo127bo126bo118b3o
123bo3bo125bo127bo$334bo629bo!
#C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
#C [[ AUTOSTART THUMBSIZE 2 HEIGHT 240 WIDTH 480 ZOOM 6 GPS 20 LOOP 630 ]]<html></code></div></div><canvas width="200" height="300" style="margin-left:1px;"><noscript></html> Please enable Javascript to view this LifeViewer. <html></noscript></canvas></div></html> |
(click above to open LifeViewer) RLE: here Plaintext: here |
Telegraph | |||||
| |||||
View static image | |||||
Pattern type | Miscellaneous | ||||
---|---|---|---|---|---|
Number of cells | 52319 | ||||
Bounding box | 9108×3469 | ||||
Discovered by | Jason Summers | ||||
Year of discovery | 2003 | ||||
|
Every 1440 ticks, the transmitter in Summers' telegraph creates a composite lightspeed signal made up of ten of the elementary signals, with information encoded in the position of the final component signal relative to the other nine. At the receiver end, a delay of 60 ticks in the appearance of that final signal is decoded as a '1' bit, whereas the normal location counts as '0'.
Most of the difficulty in designing a workable lightspeed telegraph is the problem of creating these signals with glider collisions at the upstream end of the beehive wire, and then detecting their presence at the downstream end without causing a catastrophic chain reaction that destroys the wire. In fact, a small segment of the wire at each end is destroyed when each signal is sent. The missing beehives are restored as part of the period 1440 cycle.
In 2010, Adam P. Goucher constructed a version of the telegraph using only stable circuitry, such that a single incoming glider produces the entire ten-part composite lightspeed signal that restores the beehive chain to its original position.[1] The signal is detected at the other end of the telegraph and converted back into a single output signal. This simplification came at the cost of a much slower transmission speed, one bit per 91080 ticks. In this case, the sending of the entire ten-part signal constitutes a '1' bit, and not sending the signal means '0'.
In February 2017, Louis-François Handfield completed a high-bandwidth telegraph using periodic components.[2] The same ten signals are sent, but information is encoded more efficiently in the timing of those signals, improving the transmission rate to one bit per 192 ticks. Specifically, the new transmitter sends five bits every 960 ticks, by adjusting the relative timings inside each of the five mirror-image paired subunits of the composite lightspeed signal.
Further improvements to the transmission rate are possible, with several possible encoding methods, but these would likely require very complex receiver components that would be quite difficult to design.
Image gallery
![]() A view of the entire telegraph including transmitter (right) and receiver (left) |
References
- Adam P. Goucher (February 8, 2010). Very large 'awesome' patterns (discussion thread) at the ConwayLife.com forums
- Louis-François Handfield (February 19, 2017). Re: High Bandwidth Telegraph (discussion thread) at the ConwayLife.com forums