67
11
Introduction
In order to prevent keyloggers from stealing a user's password, a certain bank account system has implemented the following security measure: only certain digits are prompted to be entered each time.
For example, say your target's password is 89097
, the system may prompt them to enter the 2nd, 4th and 5th digit:
997
Or it might prompt them to enter the 1st, 3rd and 5th digit:
807
All you know is that your target entered the digits in order, but you don't know which position they belong to in the actual password. All you know is there are two 9s, which must come before 7; and that 8 comes before 0, and 0 before 7. Therefore, there are six possible passwords:
80997
89097
89907
98097
98907
99807
The keylogger in your target's computer has been collecting password inputs for months now, so let's hack in!
Challenge
Given a list of three-digit inputs, output all the possible passwords that are valid for all inputs. In order to reduce computational complexity and to keep the amount of possible results low, the password is guaranteed to be numerical and have a fixed size of 5. The digits in every input are in order: if it's 123, the target typed 1 first, then 2, then 3.
Input/Output examples
|----------------------|--------------------------------------------|
| Input | Output |
|----------------------|--------------------------------------------|
| [320, 723, 730] | [37230, 72320, 73203, 73230] |
| [374, 842] | [37842, 38742, 83742] |
| [010, 103, 301] | [30103] |
| [123, 124, 125, 235] | [12345, 12354, 12435] |
| [239, 944] | [23944] |
| [111, 120] | [11201, 11120, 11210, 12011, 12110, 12101] |
| [456, 789] | [] |
| [756, 586] | [07586, 17586, 27586, 37586, 47586, 57586, 57856, 58756, 67586, 70586, 71586, 72586, 73586, 74586, 75086, 75186, 75286, 75386, 75486, 75586, 75686, 75786, 75806, 75816, 75826, 75836, 75846, 75856, 75860, 75861, 75862, 75863, 75864, 75865, 75866, 75867, 75868, 75869, 75876, 75886, 75896, 75986, 76586, 77586, 78586, 79586, 87586, 97586] |
| [123] | [00123, 01023, 01123, 01203, 01213, 01223, 01230, 01231, 01232, 01233, 01234, 01235, 01236, 01237, 01238, 01239, 01243, 01253, 01263, 01273, 01283, 01293, 01323, 01423, 01523, 01623, 01723, 01823, 01923, 02123, 03123, 04123, 05123, 06123, 07123, 08123, 09123, 10023, 10123, 10203, 10213, 10223, 10230, 10231, 10232, 10233, 10234, 10235, 10236, 10237, 10238, 10239, 10243, 10253, 10263, 10273, 10283, 10293, 10323, 10423, 10523, 10623, 10723, 10823, 10923, 11023, 11123, 11203, 11213, 11223, 11230, 11231, 11232, 11233, 11234, 11235, 11236, 11237, 11238, 11239, 11243, 11253, 11263, 11273, 11283, 11293, 11323, 11423, 11523, 11623, 11723, 11823, 11923, 12003, 12013, 12023, 12030, 12031, 12032, 12033, 12034, 12035, 12036, 12037, 12038, 12039, 12043, 12053, 12063, 12073, 12083, 12093, 12103, 12113, 12123, 12130, 12131, 12132, 12133, 12134, 12135, 12136, 12137, 12138, 12139, 12143, 12153, 12163, 12173, 12183, 12193, 12203, 12213, 12223, 12230, 12231, 12232, 12233, 12234, 12235, 12236, 12237, 12238, 12239, 12243, 12253, 12263, 12273, 12283, 12293, 12300, 12301, 12302, 12303, 12304, 12305, 12306, 12307, 12308, 12309, 12310, 12311, 12312, 12313, 12314, 12315, 12316, 12317, 12318, 12319, 12320, 12321, 12322, 12323, 12324, 12325, 12326, 12327, 12328, 12329, 12330, 12331, 12332, 12333, 12334, 12335, 12336, 12337, 12338, 12339, 12340, 12341, 12342, 12343, 12344, 12345, 12346, 12347, 12348, 12349, 12350, 12351, 12352, 12353, 12354, 12355, 12356, 12357, 12358, 12359, 12360, 12361, 12362, 12363, 12364, 12365, 12366, 12367, 12368, 12369, 12370, 12371, 12372, 12373, 12374, 12375, 12376, 12377, 12378, 12379, 12380, 12381, 12382, 12383, 12384, 12385, 12386, 12387, 12388, 12389, 12390, 12391, 12392, 12393, 12394, 12395, 12396, 12397, 12398, 12399, 12403, 12413, 12423, 12430, 12431, 12432, 12433, 12434, 12435, 12436, 12437, 12438, 12439, 12443, 12453, 12463, 12473, 12483, 12493, 12503, 12513, 12523, 12530, 12531, 12532, 12533, 12534, 12535, 12536, 12537, 12538, 12539, 12543, 12553, 12563, 12573, 12583, 12593, 12603, 12613, 12623, 12630, 12631, 12632, 12633, 12634, 12635, 12636, 12637, 12638, 12639, 12643, 12653, 12663, 12673, 12683, 12693, 12703, 12713, 12723, 12730, 12731, 12732, 12733, 12734, 12735, 12736, 12737, 12738, 12739, 12743, 12753, 12763, 12773, 12783, 12793, 12803, 12813, 12823, 12830, 12831, 12832, 12833, 12834, 12835, 12836, 12837, 12838, 12839, 12843, 12853, 12863, 12873, 12883, 12893, 12903, 12913, 12923, 12930, 12931, 12932, 12933, 12934, 12935, 12936, 12937, 12938, 12939, 12943, 12953, 12963, 12973, 12983, 12993, 13023, 13123, 13203, 13213, 13223, 13230, 13231, 13232, 13233, 13234, 13235, 13236, 13237, 13238, 13239, 13243, 13253, 13263, 13273, 13283, 13293, 13323, 13423, 13523, 13623, 13723, 13823, 13923, 14023, 14123, 14203, 14213, 14223, 14230, 14231, 14232, 14233, 14234, 14235, 14236, 14237, 14238, 14239, 14243, 14253, 14263, 14273, 14283, 14293, 14323, 14423, 14523, 14623, 14723, 14823, 14923, 15023, 15123, 15203, 15213, 15223, 15230, 15231, 15232, 15233, 15234, 15235, 15236, 15237, 15238, 15239, 15243, 15253, 15263, 15273, 15283, 15293, 15323, 15423, 15523, 15623, 15723, 15823, 15923, 16023, 16123, 16203, 16213, 16223, 16230, 16231, 16232, 16233, 16234, 16235, 16236, 16237, 16238, 16239, 16243, 16253, 16263, 16273, 16283, 16293, 16323, 16423, 16523, 16623, 16723, 16823, 16923, 17023, 17123, 17203, 17213, 17223, 17230, 17231, 17232, 17233, 17234, 17235, 17236, 17237, 17238, 17239, 17243, 17253, 17263, 17273, 17283, 17293, 17323, 17423, 17523, 17623, 17723, 17823, 17923, 18023, 18123, 18203, 18213, 18223, 18230, 18231, 18232, 18233, 18234, 18235, 18236, 18237, 18238, 18239, 18243, 18253, 18263, 18273, 18283, 18293, 18323, 18423, 18523, 18623, 18723, 18823, 18923, 19023, 19123, 19203, 19213, 19223, 19230, 19231, 19232, 19233, 19234, 19235, 19236, 19237, 19238, 19239, 19243, 19253, 19263, 19273, 19283, 19293, 19323, 19423, 19523, 19623, 19723, 19823, 19923, 20123, 21023, 21123, 21203, 21213, 21223, 21230, 21231, 21232, 21233, 21234, 21235, 21236, 21237, 21238, 21239, 21243, 21253, 21263, 21273, 21283, 21293, 21323, 21423, 21523, 21623, 21723, 21823, 21923, 22123, 23123, 24123, 25123, 26123, 27123, 28123, 29123, 30123, 31023, 31123, 31203, 31213, 31223, 31230, 31231, 31232, 31233, 31234, 31235, 31236, 31237, 31238, 31239, 31243, 31253, 31263, 31273, 31283, 31293, 31323, 31423, 31523, 31623, 31723, 31823, 31923, 32123, 33123, 34123, 35123, 36123, 37123, 38123, 39123, 40123, 41023, 41123, 41203, 41213, 41223, 41230, 41231, 41232, 41233, 41234, 41235, 41236, 41237, 41238, 41239, 41243, 41253, 41263, 41273, 41283, 41293, 41323, 41423, 41523, 41623, 41723, 41823, 41923, 42123, 43123, 44123, 45123, 46123, 47123, 48123, 49123, 50123, 51023, 51123, 51203, 51213, 51223, 51230, 51231, 51232, 51233, 51234, 51235, 51236, 51237, 51238, 51239, 51243, 51253, 51263, 51273, 51283, 51293, 51323, 51423, 51523, 51623, 51723, 51823, 51923, 52123, 53123, 54123, 55123, 56123, 57123, 58123, 59123, 60123, 61023, 61123, 61203, 61213, 61223, 61230, 61231, 61232, 61233, 61234, 61235, 61236, 61237, 61238, 61239, 61243, 61253, 61263, 61273, 61283, 61293, 61323, 61423, 61523, 61623, 61723, 61823, 61923, 62123, 63123, 64123, 65123, 66123, 67123, 68123, 69123, 70123, 71023, 71123, 71203, 71213, 71223, 71230, 71231, 71232, 71233, 71234, 71235, 71236, 71237, 71238, 71239, 71243, 71253, 71263, 71273, 71283, 71293, 71323, 71423, 71523, 71623, 71723, 71823, 71923, 72123, 73123, 74123, 75123, 76123, 77123, 78123, 79123, 80123, 81023, 81123, 81203, 81213, 81223, 81230, 81231, 81232, 81233, 81234, 81235, 81236, 81237, 81238, 81239, 81243, 81253, 81263, 81273, 81283, 81293, 81323, 81423, 81523, 81623, 81723, 81823, 81923, 82123, 83123, 84123, 85123, 86123, 87123, 88123, 89123, 90123, 91023, 91123, 91203, 91213, 91223, 91230, 91231, 91232, 91233, 91234, 91235, 91236, 91237, 91238, 91239, 91243, 91253, 91263, 91273, 91283, 91293, 91323, 91423, 91523, 91623, 91723, 91823, 91923, 92123, 93123, 94123, 95123, 96123, 97123, 98123, 99123] |
|----------------------|--------------------------------------------|
Rules
- Input is guaranteed non-empty.
- Leading and trailing zeros matter:
01234
is different from12340
, and1234
doesn't crack either password. Think of how real passwords work! - Standard I/O rules apply.
- No standard loopholes.
- This is code-golf, so the shortest answer in bytes wins. Non-codegolfing languages are welcome!
5Are the digits always in order? Based on the test cases I assume they are, but I couldn't see it mentioned in the rules unless I read past it. – Kevin Cruijssen – 2019-02-22T14:44:40.037
@KevinCruijssen Yes, they are in order. I'll add that to the post. – cefel – 2019-02-22T15:03:25.993
14
Welcome to PPCG! This is a nice, well-structured, and neatly formatted first challenge. You've clearly done your homework as far as getting that all down. I'm looking forward to answering it (if someone doesn't answer it in R first!). In the future, we suggest using the sandbox to get feedback before posting to main. Hope you enjoy your time on PPCG!
– Giuseppe – 2019-02-22T15:04:27.3631@Giuseppe thanks! I've been anonymously reading the questions on this site for years, and I've been writing and tweaking and actually solving this specific problem for a couple months: I liked it enough to skip the sandbox. I'll post there first next time! – cefel – 2019-02-22T15:07:53.470
Are leading zeros in the output mandatory? – Arnauld – 2019-02-22T15:10:07.180
2@Arnauld Well, if your password is 01234 or 12340 you shouldn't be able to log in by typing 1234. Passwords are more a string than a number even if composed by numbers, at least in that sense. So yes, leading and trailing zeros are mandatory. – cefel – 2019-02-22T15:15:03.130
1@cefel You should mention that in the challenge. – Arnauld – 2019-02-22T16:03:04.473
I'm confused by the example. If we know 1st/3rd/5th digits and also know 2nd/4th/5th, don't we know all 5 digits? I don't see where the ambiguity leading to 6 possibilities arises... (EDIT: oh ok we don't the specific digits that were asked for? i think you should make that explicit) – Jonah – 2019-02-22T16:12:44.540
1Said another way, the problem is asking you to construct a full sequence of known length from multiple sub-sequences (whose indexes you do not know). – Jonah – 2019-02-22T16:15:31.687
Are we allowed to take the three-digit inputs as digit lists (so like
[[1, 2, 3], [4, 5, 6]]
?) – HyperNeutrino – 2019-02-22T16:41:15.053@Arnauld I've added your recommendation into the post. Thanks for the input. – cefel – 2019-02-22T16:50:20.197
1@Jonah I've made it explicit in the post, thanks for the input. You probably nailed the problem's description in the most generic way possible - it was truly inspired by a bank account system, though, so I kept the password idea into the challenge. :) – cefel – 2019-02-22T16:51:57.643
@HyperNeutrino yes, sure. – cefel – 2019-02-22T16:52:15.530
2The final test case appears to be missing 22123... unless I'm misunderstanding something? – Jonah – 2019-02-23T05:46:38.873
This is a special case of finding the Shortest common supersequence problem.
– user202729 – 2019-02-23T11:27:15.407@Jonah you're right - for some reason my solution is skipping that particular number... there must be a bug somewhere. I'm adding it to the test case. Nice catch! – cefel – 2019-02-23T14:39:10.713
@user202729 rest assured that I didn't know the shortest common supersequence problem was a thing - still, I don't think we've had anything like it in PPCG before. – cefel – 2019-02-23T14:40:46.383