Ruby on Rails
Ruby on Rails, often shortened to Rails or RoR, is an open source web application framework for the Ruby programming language. It is intended to be used with an Agile development methodology that is used by web developers for rapid development.
This document describes how to set up the Ruby on Rails Framework on an Arch Linux system.
Installation
Ruby on Rails requires Ruby to be installed, so read that article first for installation instructions. The nodejs package is also required if using uglifier (Ruby wrapper for UglifyJS JavaScript compressor, optional) The Rails framework is linked to a version of Ruby (or the system Ruby installation). Ruby version(s) installed can be from system or from rbenv or from rvm (Ruby Version Manager).
RubyGems
--no-user-install
. Please read Ruby#Installing gems system-wide for possible dangers of using RubyGem in this way.The following command will install Rails for the current user:
$ gem install rails
Building the documentation takes a while. If you want to skip it, append --no-document
to the install command.
$ gem install rails --no-document
gem is a package manager for Ruby modules, somewhat like pacman is to Arch Linux. To update your gems, simply run:
$ gem update
Pacman
Install the ruby-railsAUR package. Alternatively, see Ruby#Managing RubyGems using pacman.
Quarry binary repository
Install ruby-rails from the unofficial quarry repository.
Configuration
Rails is bundled with a basic HTTP server called Puma. You can create a test application to test it. First, create an application with the rails command:
$ rails new testapp_name
Errno::ENOENT: No such file or directory (...) An error occurred while installing x, and Bundler cannot continue.
, you might have to configure Bundler so that it installs gems per-user and not system-wide. Alternatively, run rails new testapp_name
once as root. If it has completed successfully, delete testapp_name/
and run rails new testapp_name
again as a regular user.This creates a new folder inside your current working directory.
$ cd testapp_name
Next start the web server. It listens on port 3000 by default:
$ rails server
Now visit the testapp_name website on your local machine by opening http://localhost:3000 in your browser
A test-page should be shown greeting you "Welcome aboard".
Application servers
The built-in Ruby On Rails HTTP server (called Puma) is convenient for basic development, but it is not recommended for production use. Instead, you should use an application server such as #Thin, #Unicorn or Phusion Passenger.
Thin
Thin is a fast and very simple Ruby web server.
First install thin gem:
$ gem install thin
Then start it using:
$ thin start
Unicorn
Unicorn is an application server that cannot talk directly to clients. Instead, a web server must sit between clients and Unicorn, proxying requests as needed. Unicorn is loosely based on Mongrel. It is used by Github, and it uses an architecture that tries hard to find the best child for handling a request. Explanation of differences between Unicorn and Mongrel.
Install the Unicorn gem:
# gem install unicorn
Then create a configuration file for your application in /etc/unicorn/
. For example; here is a configuration example based on this tutorial for Redmine:
/etc/unicorn/redmine.ru
working_directory "/srv/http/redmine" pid "/tmp/redmine.pid" preload_app true timeout 60 worker_processes 4 listen 4000 stderr_path('/var/log/unicorn.log') GC.respond_to?(:copy_on_write_friendly=) and GC.copy_on_write_friendly = true after_fork do |server, worker| #start the worker on port 4000, 4001, 4002 etc... addr = "0.0.0.0:#{4000 + worker.nr}" # infinite tries to start the worker server.listen(addr, :tries => -1, :delay => -1, :backlog => 128) #Drop privileges if running as root worker.user('nobody', 'nobody') if Process.euid == 0 end
Start it using:
# /usr/bin/unicorn -D -E production -c /etc/unicorn/redmine.ru
Systemd service
Put the following contents in /etc/systemd/system/unicorn.service
:
/etc/systemd/system/unicorn.service
[Unit] Description=Unicorn application server After=network.target [Service] Type=forking User=redmine ExecStart=/usr/bin/unicorn -D -E production -c /etc/unicorn/redmine.ru [Install] WantedBy=multi-user.target
You can now easily start and stop unicorn using systemctl
Nginx Configuration
After setting up Nginx, configure unicorn as an upstream server using something like this (Warning: this is a stripped example. It probably does not work without additional configuration):
http { upstream unicorn { server 127.0.0.1:4000 fail_timeout=0; server 127.0.0.1:4001 fail_timeout=0; server 127.0.0.1:4002 fail_timeout=0; server 127.0.0.1:4003 fail_timeout=0; } server { listen 80 default; server_name YOURHOSTNAMEHERE; location / { root /srv/http/redmine/public; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header Host $http_host; proxy_redirect off; proxy_pass http://unicorn; } } }
Apache/Nginx (using Phusion Passenger)
Phusion Passenger is a module available for Nginx and Apache HTTP Server, that greatly simplifies setting up a Rails server environment. Nginx does not support modules as Apache and has to be compiled with in order to support Passenger; let Passenger compile it for you. As for Apache, let Passenger set up the module for you.
Two differents choices (one or the other, not both in same time):
- Install the package.
- Installing the 'passenger' gem from any version of ruby (user setting):
# gem install passenger
If you are aiming to use Apache HTTP Server, install the package (if passenger is not installed from gem), and run:
# passenger-install-apache2-module
In case a rails application is deployed with a sub-URI, like http://example.com/yourapplication, some additional configuration is required, see the Passenger documentation
For Nginx, install the package (if passenger is not installed from gem), and run:
# passenger-install-nginx-module
The installer will provide you with any additional information regarding the installation (such as installing additional libraries).
To serve an application with Nginx, configure it as follows:
server { server_name app.example.org; root path_to_app/public; # Be sure to point to 'public' folder! passenger_enabled on; rails_env development; # Rails environment. }
Puma (with Nginx as reverse proxy server)
Puma (Github Page) is a simple, fast, threaded, and highly concurrent HTTP 1.1 server for Ruby/Rack applications, and is considered the replacement for Webrick and Mongrel. It was designed to be the go-to server for Rubinius, but also works well with JRuby and MRI. While reverse proxy server would acts as a load balancer that routes all external requests to a pool of web apps.
For a webserver it is better to use a server user and group, check Users and groups#Example adding a user, below use as user name and as group name, also my_app
as rails app name.
Start by copying your app to /var/www/my_app. And set new ownership with
# cd /var/www/ # chown -R rails:server my_app
and permission for user with
# chmod -R 775 my_app
Then add in the Gemfile and install with
$ cd my_app $ bundle install
Also install by pacman.
Under your app folder, create sockets, pid and log folder with
$ mkdir -p shared/pids shared/sockets shared/log
Backup nginx.conf with
# cp /etc/nginx/nginx.conf /etc/nginx/nginx.conf.backup
Then create a new nginx.conf file with your favorite editor, copy codes below and modify as you like:
Start the service.
There are several ways to start puma server, two ways are recommended below:
In common create file , copy codes below and modify as you like:
Option A: With configuration file
Start server with
$ bundle exec puma -C config/puma.rb
You can also run it in background with parameter and check with
$ pgrep puma
when you want to it.
If you want to keep it after you log out, you can use
$ nohup bundle exec puma -C config/puma.rb &
But if the system reboot, the process will still get lost.
Option 2: by systemd
Create a new systemd unit:
~/.config/systemd/user/puma.service
[Unit] Description=Puma application server After=network.target [Service] WorkingDirectory=/var/www/my_app #Environment=RAILS_ENV=production PIDFile=/var/www/my_app/shared/pids/puma.pid ExecStart=/home/rails/.gem/ruby/2.2.0/bin/bundle exec \ /home/rails/.gem/ruby/2.2.0/bin/puma \ -C /var/www/my_app/config/puma.rb [Install] WantedBy=default.target
To enable puma system-widely, create:
For further reading take a look at #References. Also, for easily deploying app in production mode, you can try capistrano
Databases
Most web applications will need to interact with some sort of database. ActiveRecord (the ORM used by Rails to provide database abstraction) supports several database vendors, the most popular of which are MySQL, SQLite, and PostgreSQL. And then you will have next to configure the file "config/database.yml" for Rails application web site able to connect on your database.
SQLite
SQLite is the default lightweight database for Ruby on Rails. To enable SQLite, simply install .
PostgreSQL
Install .
Install for Rails:
# gem install pg
Or add the gem inside your Gemfile of your project, then use bundle.
create a new Rails web site:
# rails new my_web_site -d postgresql
MySQL
First, install and configure a MySQL server. Please refer to MariaDB on how to do this.
A gem with some native extensions is required, probably best installed as root:
# gem install mysql
You can generate a rails application configured for MySQL by using the parameter:
$ rails new testapp_name -d mysql
Database Access Configuration
What ever Database (MySQL or Postgresql or SQlite (the default one) you use, you then need to edit . Rails uses different databases for development, testing, production and other environments. Here is an example development configuration for MySQL running on localhost:
default: adapter: mysql (or postgresql or sqlite) username: my_user_name_access password: my_secret_password
For safety reasons, it is a good practice to not directly put password (who will be no more secret) as clear text in a text file. Instead you can replace "my_secret_password' by "'<%= ENV["MYSQL_PASSWD"] %>'" where MYSQL_PASSWD can be an environment variable exported from the user environment the server use (~/.profile or ~/.bashrc or ~/.zshrc depend of your choice and utility). Surrounding <%= ENV.... %> by "'" searve in case of your password has some special chars like # or !, etc...
Create the databases from Rails
Note that you do not have to actually create the database using MySQL or Postgresql or Sqlite, as this can be done via Rails directly with:
For rails-4.X version:
# rake db:create
For rails-5.X version:
# rails db:create (for version of Rails-5.X)
If no errors are shown, then your database has been created and Rails can talk to your MySQL database.
The Perfect Rails Setup
Phusion Passenger running multiple Ruby versions.
- Arch Linux: A simple, lightweight distribution. ;)
- Nginx: A fast and lightweight web server with a strong focus on high concurrency, performance and low memory usage.
- Passenger (a.k.a. mod_rails or mod_rack): Supports both Apache and Nginx web servers. It makes deployment of Ruby web applications, such as those built on Ruby on Rails web framework, a breeze.
- Ruby Version Manager (RVM): A command-line tool which allows you to easily install, manage, and work with multiple Ruby environments from interpreters to sets of gems. RVM lets you deploy each project with its own completely self-contained and dedicated environment —from the specific version of ruby, all the way down to the precise set of required gems to run your application—.
- SQLite: The default lightweight database for Ruby on Rails.
Step 0: SQLite
Install .
Step 1: RVM
Make a multi-user RVM installation as specified here.
In the 'adding users to the rvm group' step, do
# usermod -a -G rvm http # usermod -a -G rvm nobody
http
and are the users related to Nginx and Passenger, respectively.
Step 2: Rubies
Once you have a working RVM installation in your hands, it is time to install the latest Ruby interpreter
$ rvm install 2.0.0
Step 3: Nginx with Passenger support
Run the following to allow passenger install nginx:
$ rvm use 2.0.0 $ gem install passenger $ rvmsudo passenger-install-nginx-module
The passenger gem will be put into the default gemset.
This will download the sources of Nginx, compile and install it for you. It will guide you through all the process. Note that the default location for Nginx will be .
After completion, add the following two lines into the 'http block' at that look like:
http { ... passenger_root /usr/local/rvm/gems/ruby-2.0.0-p353/gems/passenger-3.0.9; passenger_ruby /usr/local/rvm/wrappers/ruby-2.0.0-p353/ruby; ... }
Step 4: Gemsets and Apps
For each Rails application you should have a gemset. Suppose that you want to try RefineryCMS against BrowserCMS, two open-source Content Management Systems based on Rails.
Install RefineryCMS first:
$ rvm use 2.0.0@refinery --create $ gem install rails -v 4.0.1 $ gem install passenger $ gem install refinerycms refinerycms-i18n sqlite3
Deploy a RefineryCMS instance called refineria:
$ cd /srv/http/ $ rvmsudo refinerycms refineria
Install BrowserCMS in a different gemset:
$ rvm use 2.0.0@browser --create $ gem install rails -v 4.0.1 $ gem install passenger $ gem install browsercms sqlite3
Deploy a BrowserCMS instance called navegador:
$ cd /srv/http/ $ rvmsudo browsercms demo navegador $ cd /srv/http/navegador $ rvmsudo rake db:install
Passenger for Nginx and Passenger Standalone
Observe that the passenger gem was installed three times and with different intentions; in the environments
- 2.0.0 => for Nginx,
- 2.0.0@refinery => Standalone
- 2.0.0@browser => Standalone
The strategy is to combine Passenger for Nginx with Passenger Standalone. One must first identify the Ruby environment (interpreter plus gemset) that one uses the most; in this setup the Ruby interpreter and the default gemset were selected. One then proceeds with setting up Passenger for Nginx to use that environment (step 3).
- Applications within the chosen environment can be served as in Apache/Nginx (using Phusion Passenger), page up in this article.
- All applications that are to use a different Ruby version and/or gemset can be served separately through Passenger Standalone and hook into the main web server via a reverse proxy configuration (step 6).
Step 5: .rvmrc files and ownerships
This step is crucial for the correct behaviour of the setup. RVM seeks for .rvmrc files when changing folders; if it finds one, it reads it. In these files normally one stores a line like
rvm <ruby_version>@<gemset_name>
so the specified environment is set at the entrance of applications' root folder.
Create /srv/http/refineria/.rvmrc doing
# echo "rvm ree@refinery" > /srv/http/refineria/.rvmrc
, and /srv/http/navegador/.rvmrc with
# echo "rvm 2.0.0@browser" > /srv/http/navegador/.rvmrc
You have to enter to both application root folders now, because every first time that RVM finds a .rvmrc it asks you if you trust the given file, consequently you must validate the two files you have just created.
These files aid the programs involved to find the correct gems.
Apart, if applications' files and folders are not owned by the right user you will face database write-access problems. The use of rvmsudo produces root-owned archives when generated by Rails; in the other hand, nobody is the user for Passenger —if you have not changed it—: who will use and should posses them. Fix this doing
# chown -R nobody.nobody /srv/http/refineria /srv/http/navegador
Step 6: Reverse proxies
You have to start the Passenger Standalone web servers for your applications. So, do
$ cd /srv/http/refineria $ rvmsudo passenger start --socket tmp/sockets/passenger.socket -d
and
$ cd /srv/http/navegador $ rvmsudo passenger start --socket tmp/sockets/passenger.socket -d
. The first time that you run a Passenger Standalone it will perform a minor installation.
Note that you are using unix domain sockets instead of the commonly-used TCP sockets; it turns out that unix domain are significantly faster than TCP sockets.
Launch Passenger Standalone daemons at system start-up
Do you have a script? Please post it here.
The systemd script below was made for a Typo blog I host at /srv/http/typo. It is located at /etc/systemd/system/passenger_typo.service. I set the Environment= tags (see "man systemd.exec") from the output of "rvm env". The only exception was PATH=, which I had to combine from my regular PATH and the output of rvm env.
Note: If you do not set the "WorkingDirectory=" variable to your application folder, passenger will fail to find your app and will subsequently shut itself down.
[Unit] Description=Passenger Standalone Script for Typo After=network.target [Service] Type=forking WorkingDirectory=/srv/http/typo PIDFile=/srv/http/typo/tmp/pids/passenger.pid Environment=PATH=/usr/local/rvm/gems/ruby-2.0.0-p0@typo/bin:/usr/local/rvm/gems/ruby-2.0.0-p0@global/bin:/usr/local/rvm/rubies/ruby-2.0.0-p0/bin:/usr/local/rvm/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/usr/sbin:/sbin:/usr/bin/core_perl Environment=rvm_env_string=ruby-2.0.0-p0@typo Environment=rvm_path=/usr/local/rvm Environment=rvm_ruby_string=ruby-2.0.0-p0 Environment=rvm_gemset_name=typo Environment=RUBY_VERSION=ruby-2.0.0-p0 Environment=GEM_HOME=/usr/local/rvm/gems/ruby-2.0.0-p0@typo Environment=GEM_PATH=/usr/local/rvm/gems/ruby-2.0.0-p0@typo:/usr/local/rvm/gems/ruby-2.0.0-p0@global Environment=MY_RUBY_HOME=/usr/local/rvm/rubies/ruby-2.0.0-p0 Environment=IRBRC=/usr/local/rvm/rubies/ruby-2.0.0-p0/.irbrc ExecStart=/bin/bash -c "rvmsudo passenger start --socket /srv/http/typo/tmp/sockets/passenger.socket -d" [Install] WantedBy=multi-user.target
With subdomains
Once again edit /opt/nginx/conf/nginx.conf to include some vital instructions:
proxy_pass http://127.0.0.1:3000;
Without subdomains
If you for some reason do not want to host each application on its own subdomain but rather in a url like: then you could do something like this in your config:
At this point you are in conditions to start the service and to access both CMSs through refinery.domain.com and browser.domain.com.