Multiboot USB drive

A multiboot USB flash drive allows booting multiple ISO files from a single device. The ISO files can be copied to the device and booted directly without unpacking them first. There are multiple methods available, but they may not work for all ISO images.

Using GRUB and loopback devices

Advantages:

  • only a single partition required
  • all ISO files are found in one directory
  • adding and removing ISO files is simple

Disadvantages:

  • not all ISO images are compatible
  • the original boot menu for the ISO file is not shown
  • it can be difficult to find a working boot entry

Preparation

Create at least one partition and a filesystem supported by GRUB on the USB drive. See Partitioning and File systems#Create a file system. Choose the size based on the total size of the ISO files that you want to store on the drive, and plan for extra space for the bootloader.

Simple installation

Mount the filesystem located on the USB drive:

# mount /dev/sdXY /mnt

Create the directory /boot:

# mkdir /mnt/boot

Install GRUB on the USB drive:

# grub-install --target=i386-pc --recheck --boot-directory=/mnt/boot /dev/sdX

In case you want to boot ISOs in UEFI mode, you have to install grub for the UEFI target:

# grub-install --target=x86_64-efi --removable --boot-directory=/mnt/boot --efi-directory=/mnt

For UEFI, the partition has to be the first one in an MBR partition table and formatted with FAT32.

Hybrid UEFI GPT + BIOS GPT/MBR boot

This configuration is useful for creating a universal USB key, bootable everywhere. First of all you must create a GPT partition table on your device. You need at least 3 partitions:

  1. A BIOS boot partition (gdisk type code EF02). This partition must be 1 MiB in size
  2. An EFI System partition (gdisk type code EF00 with a FAT32 filesystem). This partition can be as small as 50 MiB.
  3. Your data partition (use a filesystem supported by GRUB). This partition can take up the rest of the space of your drive.

Next you must create a hybrid MBR partition table. Without it, a BIOS MBR based system will not boot. It will not find the partitions it expects to find.

Hybrid MBR partition table creation example using gdisk:

# gdisk /dev/sd''X''
Command (? for help): r
Recovery/transformation command (? for help): h

WARNING! Hybrid MBRs are flaky and dangerous! If you decide not to use one,
just hit the Enter key at the below prompt and your MBR partition table will
be untouched.

Type from one to three GPT partition numbers, separated by spaces, to be added to the hybrid MBR, in sequence: 1 2 3
Place EFI GPT (0xEE) partition first in MBR (good for GRUB)? (Y/N): N

Creating entry for GPT partition #1 (MBR partition #1)
Enter an MBR hex code (default EF): 
Set the bootable flag? (Y/N): N

Creating entry for GPT partition #2 (MBR partition #2)
Enter an MBR hex code (default EF): 
Set the bootable flag? (Y/N): N

Creating entry for GPT partition #3 (MBR partition #3)
Enter an MBR hex code (default 83): 
Set the bootable flag? (Y/N): Y

Recovery/transformation command (? for help): x
Expert command (? for help): h
Expert command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING
PARTITIONS!!

Do you want to proceed? (Y/N): Y

Do not forget to format the partitions :

# mkfs.fat -F32 /dev/sdX2
# mkfs.ext4 /dev/sdX3

You can now install GRUB to support both EFI + GPT and BIOS + GPT/MBR. The GRUB configuration (--boot-directory) can be kept in the same place.

First, you need to mount the EFI system partition and the data partition of your USB drive.

An example of this would be as follows:

# mount /dev/sdX3 /mnt
# mkdir -p /mnt/boot/EFI
# mount /dev/sdX2 /mnt/boot/EFI

Then, you can install GRUB for UEFI with:

In most cases will correspond to the /mnt/boot/EFI subdirectory on your mounted USB disk.

# grub-install --target=x86_64-efi --recheck --removable --efi-directory=/EFI_MOUNTPOINT --boot-directory=/DATA_MOUNTPOINT/boot

And for BIOS with:

# grub-install --target=i386-pc --recheck --boot-directory=/DATA_MOUNTPOINT/boot /dev/sdX

As an additional fallback, you can also install GRUB on your MBR-bootable data partition:

# grub-install --target=i386-pc --recheck --boot-directory=/DATA_MOUNTPOINT/boot /dev/sdX3

Using a template

There are some git projects which provide some pre-existing GRUB configuration files, and a nice generic which can be used to load the other boot entries on demand, showing them only if the specified ISO files - or folders containing them - are present on the drive.

Multiboot USB: https://github.com/hackerncoder/multibootusb

GLIM (GRUB2 Live ISO Multiboot): https://github.com/thias/glim

Manual configuration

For the purpose of multiboot USB drive it is easier to edit by hand instead of generating it. Alternatively, make the following changes in /etc/grub.d/40_custom or and generate /mnt/boot/grub/grub.cfg using grub-mkconfig.

As it is recommend to use a persistent name instead of to identify the partition on the USB drive where the image files are located, define a variable for convenience to hold the value. If the ISO images are on the same partition as GRUB, use the following to read the UUID at boot time:

Or specify the UUID explicitly:

Alternatively, use the device label instead of UUID:

The necessary UUID or label can be found using . Do not use the same label as the Arch ISO for the USB device, otherwise the boot process will fail.

To complete the configuration, a boot entry for each ISO image has to be added below this header, see the next section for examples.

Boot entries

It is assumed that the ISO images are stored in the directory on the same filesystem where GRUB is installed. Otherwise it would be necessary to prefix the path to ISO file with device identification when using the command, for example . As this identification of devices is not persistent, it is not used in the examples in this section.

One can use persistent block device naming like so. Replace the UUID according to your ISO filesystem UUID.

# define globally (i.e outside any menuentry)
insmod search_fs_uuid
search --no-floppy --set='''isopart''' --fs-uuid ''123-456''
# later use inside each menuentry instead
loopback loop '''($isopart)'''$isofile

Arch Linux monthly release

Also see archiso.

menuentry '[loopback]archlinux-2020.10.01-x86_64.iso' {
	set isofile='/boot/iso/archlinux-2020.10.01-x86_64.iso'
	loopback loop $isofile
	linux (loop)/arch/boot/x86_64/vmlinuz-linux img_dev=$imgdevpath img_loop=$isofile earlymodules=loop
	initrd (loop)/arch/boot/intel-ucode.img (loop)/arch/boot/amd-ucode.img (loop)/arch/boot/x86_64/initramfs-linux.img
}

See README.bootparams for archiso options supported in kernel command line.

MemTest86+

MemTest86+ is included in the monthly ISO.

archboot

See Archboot Homepage.

Using Syslinux and memdisk

Using the memdisk module, the ISO image is loaded into memory, and its bootloader is loaded. Make sure that the system that will boot this USB drive has sufficient amount of memory for the image file and running operating system.

Preparation

Make sure that the USB drive is properly partitioned and that there is a partition with file system supported by Syslinux, for example fat32 or ext4. Then install Syslinux to this partition, see Syslinux#Installation on BIOS.

Install the memdisk module

The memdisk module was not installed during Syslinux installation, it has to be installed manually. Mount the partition where Syslinux is installed to and copy the memdisk module to the same directory where Syslinux is installed:

# cp /usr/lib/syslinux/bios/memdisk /mnt/boot/syslinux/

Configuration

After copying the ISO files on the USB drive, edit the Syslinux configuration file and create menu entries for the ISO images. The basic entry looks like this:

See memdisk on Syslinux wiki for more configuration options.

Automated tools

  • Ventoy An open source tool to create bootable USB drive for ISO/WIM/IMG/VHD(x)/EFI files. You do not need to format the disk over and over, you just need to copy the files to the USB drive and boot them directly.
https://www.ventoy.net/ || ventoy-binAUR
gollark: These backdoors are such wonderful debugging aids.
gollark: I forgot to ignore _G.
gollark: Er, basically, my sandboxing thing recursively descends the environment table to attempt to setfenv it...
gollark: Wow, I've created an amazing amount of errors so far!
gollark: Probably.

See also

This article is issued from Archlinux. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.