Installation guide

This document is a guide for installing Arch Linux using the live system booted from an installation medium made from an official installation image. For alternative means of installation, see Category:Installation process.

Before installing, it would be advised to view the FAQ. For conventions used in this document, see Help:Reading. In particular, code examples may contain placeholders (formatted in italics) that must be replaced manually.

For more detailed instructions, see the respective ArchWiki articles or the various programs' man pages, both linked from this guide. For interactive help, the IRC channel and the forums are also available.

Arch Linux should run on any x86_64-compatible machine with a minimum of 512 MiB RAM, though more memory is needed to boot the live system for installation. A basic installation should take less than 2 GiB of disk space. As the installation process needs to retrieve packages from a remote repository, this guide assumes a working internet connection is available.

Pre-installation

Acquire an installation image

Visit the Download page and, depending on how you want to boot, acquire the ISO file or a netboot image, and the respective GnuPG signature.

Verify signature

It is recommended to verify the image signature before use, especially when downloading from an HTTP mirror, where downloads are generally prone to be intercepted to serve malicious images.

On a system with GnuPG installed, do this by downloading the PGP signature (under Checksums in the Download page) to the ISO directory, and verifying it with:

$ gpg --keyserver-options auto-key-retrieve --verify archlinux-version-x86_64.iso.sig

Alternatively, from an existing Arch Linux installation run:

$ pacman-key -v archlinux-version-x86_64.iso.sig
Note:
  • The signature itself could be manipulated if it is downloaded from a mirror site, instead of from archlinux.org as above. In this case, ensure that the public key, which is used to decode the signature, is signed by another, trustworthy key. The gpg command will output the fingerprint of the public key.
  • Another method to verify the authenticity of the signature is to ensure that the public key's fingerprint is identical to the key fingerprint of the Arch Linux developer who signed the ISO-file. See Wikipedia:Public-key cryptography for more information on the public-key process to authenticate keys.

Prepare an installation medium

The installation image can be supplied to the target machine via a USB flash drive, an optical disc or a network with PXE: follow the appropriate article to prepare yourself an installation medium from the chosen image.

Boot the live environment

  1. Point the current boot device to the one which has the Arch Linux installation medium. Typically it is achieved by pressing a key during the POST phase, as indicated on the splash screen. Refer to your motherboard's manual for details.
  2. When the installation medium's boot loader menu appears, select Arch Linux install medium and press Enter to enter the installation environment.
    Tip: The installation image uses systemd-boot for booting in UEFI mode and syslinux for booting in BIOS mode. See README.bootparams for a list of boot parameters.
  3. You will be logged in on the first virtual console as the root user, and presented with a Zsh shell prompt.

To switch to a different console—for example, to view this guide with Lynx alongside the installation—use the Alt+arrow shortcut. To edit configuration files, mcedit(1), nano and vim are available. See packages.x86_64 for a list of the packages included in the installation medium.

Set the keyboard layout

The default console keymap is US. Available layouts can be listed with:

# ls /usr/share/kbd/keymaps/**/*.map.gz

To modify the layout, append a corresponding file name to loadkeys(1), omitting path and file extension. For example, to set a German keyboard layout:

# loadkeys de-latin1

Console fonts are located in /usr/share/kbd/consolefonts/ and can likewise be set with setfont(8).

Verify the boot mode

To verify the boot mode, list the efivars directory:

# ls /sys/firmware/efi/efivars

If the command shows the directory without error, then the system is booted in UEFI mode. If the directory does not exist, the system may be booted in BIOS (or CSM) mode. If the system did not boot in the mode you desired, refer to your motherboard's manual.

Connect to the internet

To set up a network connection, go through the following steps:

Note: The installation image has systemd-networkd.service, systemd-resolved.service and iwd.service enabled by default. That will not be the case for the installed system.

Update the system clock

Use timedatectl(1) to ensure the system clock is accurate:

# timedatectl set-ntp true

To check the service status, use timedatectl status.

Partition the disks

When recognized by the live system, disks are assigned to a block device such as /dev/sda, /dev/nvme0n1 or /dev/mmcblk0. To identify these devices, use lsblk or fdisk.

# fdisk -l

Results ending in rom, loop or airoot may be ignored.

The following partitions are required for a chosen device:

If you want to create any stacked block devices for LVM, system encryption or RAID, do it now.

Example layouts

BIOS with MBR
Mount point Partition Partition type Suggested size
[SWAP] /dev/swap_partition Linux swap More than 512 MiB
/mnt /dev/root_partition Linux Remainder of the device
UEFI with GPT
Mount point Partition Partition type Suggested size
/mnt/boot or /mnt/efi /dev/efi_system_partition EFI system partition At least 260 MiB
[SWAP] /dev/swap_partition Linux swap More than 512 MiB
/mnt /dev/root_partition Linux x86-64 root (/) Remainder of the device

See also Partitioning#Example layouts.

Note:
  • Use fdisk or parted to modify partition tables, for example fdisk /dev/the_disk_to_be_partitioned.
  • Swap space can be set on a swap file for file systems supporting it.
  • If the disk from which you want to boot already has an EFI system partition, do not create another one, but use the existing partition instead.

Format the partitions

Once the partitions have been created, each newly created partition must be formatted with an appropriate file system. For example, to create an Ext4 file system on /dev/root_partition, run:

# mkfs.ext4 /dev/root_partition

If you created a partition for swap, initialize it with mkswap(8):

# mkswap /dev/swap_partition
# swapon /dev/swap_partition

See File systems#Create a file system for details.

Note: For stacked block devices replace /dev/*_partition with the appropriate block device path.

Mount the file systems

Mount the root volume to /mnt. For example, if the root volume is /dev/root_partition:

# mount /dev/root_partition /mnt

Create any remaining mount points (such as /mnt/efi) using mkdir(1) and mount their corresponding volumes.

genfstab(8) will later detect mounted file systems and swap space.

Installation

Select the mirrors

Packages to be installed must be downloaded from mirror servers, which are defined in /etc/pacman.d/mirrorlist. On the live system, after connecting to the internet, reflector updates the mirror list by choosing 70 most recently synchronized HTTPS mirrors and sorting them by download rate.

The higher a mirror is placed in the list, the more priority it is given when downloading a package. You may want to inspect the file to see if it is satisfactory. If it is not, edit the file accordingly, and move the geographically closest mirrors to the top of the list, although other criteria should be taken into account.

This file will later be copied to the new system by pacstrap, so it is worth getting right.

Install essential packages

Use the pacstrap(8) script to install the base package, Linux kernel and firmware for common hardware:

# pacstrap /mnt base linux linux-firmware
Tip:
  • You can substitute linux for a kernel package of your choice, or you could omit it entirely when installing in a container.
  • You could omit the installation of the firmware package when installing in a virtual machine or container.

The base package does not include all tools from the live installation, so installing other packages may be necessary for a fully functional base system. In particular, consider installing:

To install other packages or package groups, append the names to the pacstrap command above (space separated) or use pacman while chrooted into the new system. For comparison, packages available in the live system can be found in packages.x86_64.

Configure the system

Fstab

Generate an fstab file (use -U or -L to define by UUID or labels, respectively):

# genfstab -U /mnt >> /mnt/etc/fstab

Check the resulting /mnt/etc/fstab file, and edit it in case of errors.

Chroot

Change root into the new system:

# arch-chroot /mnt

Time zone

Set the time zone:

# ln -sf /usr/share/zoneinfo/Region/City /etc/localtime

Run hwclock(8) to generate /etc/adjtime:

# hwclock --systohc

This command assumes the hardware clock is set to UTC. See System time#Time standard for details.

Localization

Edit /etc/locale.gen and uncomment en_US.UTF-8 UTF-8 and other needed locales. Generate the locales by running:

# locale-gen

Create the locale.conf(5) file, and set the LANG variable accordingly:

/etc/locale.conf
LANG=''en_US.UTF-8''

If you set the keyboard layout, make the changes persistent in vconsole.conf(5):

/etc/vconsole.conf
KEYMAP=''de-latin1''

Network configuration

Create the hostname file:

/etc/hostname
''myhostname''

Add matching entries to hosts(5):

/etc/hosts
127.0.0.1	localhost
::1		localhost
127.0.1.1	''myhostname''.localdomain	''myhostname''

If the system has a permanent IP address, it should be used instead of 127.0.1.1.

Complete the network configuration for the newly installed environment, that includes installing your preferred network management software.

Initramfs

Creating a new initramfs is usually not required, because mkinitcpio was run on installation of the kernel package with pacstrap.

For LVM, system encryption or RAID, modify mkinitcpio.conf(5) and recreate the initramfs image:

# mkinitcpio -P

Root password

Set the root password:

# passwd

Boot loader

Choose and install a Linux-capable boot loader. If you have an Intel or AMD CPU, enable microcode updates in addition.

Reboot

Exit the chroot environment by typing exit or pressing Ctrl+d.

Optionally manually unmount all the partitions with umount -R /mnt: this allows noticing any "busy" partitions, and finding the cause with fuser(1).

Finally, restart the machine by typing reboot: any partitions still mounted will be automatically unmounted by systemd. Remember to remove the installation medium and then login into the new system with the root account.

Post-installation

See General recommendations for system management directions and post-installation tutorials (like setting up a graphical user interface, sound or a touchpad).

For a list of applications that may be of interest, see List of applications.

gollark: They could probably be more sure with some tricks with, I don't know, producing real and fake reports and not telling the reviewers which is which.
gollark: Obviously, the computers just check who's using them.
gollark: But you can get other people's information you didn't have before, yes?
gollark: Imagine the sheer productivity.
gollark: What if you allowed them to have *mechanical DVORAK keyboards*?
This article is issued from Archlinux. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.